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HDT² provides the first falsifiable evidence that token-entropy geometry can be normalized 

across models to produce a portable, read-only diagnostic for reasoning stability—

revealing both where the method works and where it fundamentally does not. 

 

Abstract 
Large language models (LLMs) often generate fluent but incorrect statements, yet there is no 

reliable, model-agnostic way to detect when a model’s reasoning is becoming unstable. We present 

HDT², a pilot framework for entropy-based reasoning diagnostics that aims to provide a portable, 

read-only uncertainty geometry across models. The method derives entropy bands ψ* from a 

reference model’s token-level Shannon entropy and aligns other models into this geometry through 

an unsupervised affine calibration procedure (UNSUP_H_ALIGN) using quantile matching. 

We instantiate the framework using four operational operators—Ω (observe entropy), Δ (orient 

relative to ψ*), Φ (classify state), and Ψ (act via continuation or escalation)—and evaluate it on 

four instruction-tuned LLMs from the Qwen and Mistral families. ψ* is constructed from Qwen 

2.5-14B; alignment is then attempted on three target models. One model (Mistral-Nemo-Instruct-

2407) satisfies pre-defined alignment thresholds (≤5% max error, ≤3% median error of the 

reference interquartile range) and undergoes a seven-gate validation protocol assessing control 

correctness, entropy variance reduction, accuracy correlation, escalation behavior, overhead, and 

reproducibility. Two models fail alignment, providing empirical evidence that entropy geometry 

is architecture- and scale-dependent. 

On the aligned model, ψ* yields stabilized entropy trajectories, reliable escalation at extreme 

bands, and higher correctness rates for stable-band outputs—all without modifying model 

parameters. HDT² does not claim to solve hallucination; instead, it offers falsifiable evidence that 

entropy-band calibration can serve as a portable diagnostic substrate for LLM reasoning stability. 

All code and artifacts are released for replication and critique. 
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Academic and research use is unrestricted. Commercial use requires a separate licensing 

agreement from the author.*  



1 Introduction 
Large language models (LLMs) achieve impressive performance across a wide range of tasks, 

yet remain prone to producing fluent but incorrect statements—commonly referred to as 

hallucinations. While substantial work has focused on training-time or architecture-level 

mitigation, the ability to detect when a model’s reasoning is becoming unstable remains limited. 

Existing detection strategies often rely on model-specific confidence signals such as logit-based 

perplexity estimates, sampling variance, or domain-specific classifiers. These approaches do not 

generalize well across models, architectures, or scales, and therefore cannot provide the 

foundation for a transferable, deployment-ready uncertainty monitor. 

This work explores a different perspective: token-level Shannon entropy during generation 

encodes a measurable signature of reasoning stability. Prior studies have investigated entropy 

as a proxy for confidence, but primarily within single-model settings. What remains unknown is 

whether relative entropy structure—its distribution, shape, and critical thresholds—can be 

calibrated across different models to form a shared uncertainty geometry. If such calibration is 

possible, it would offer a pathway toward portable, model-agnostic mechanisms for detecting 

reasoning instability. 

This paper presents HDT², a pilot framework for cross-model uncertainty calibration built on 

three key components: 

1. Entropy Bands (ψ*) 

Quantile-derived regions of “stable,” “risky,” and “extreme” uncertainty, defined on a 

reference model and used as the common target for other models. 

2. UNSUP_H_ALIGN 

An unsupervised entropy-alignment protocol that fits an affine transform between a target 

model’s entropy distribution and the reference ψ* geometry—without labels or task 

supervision. 

3. 7-Gate Validation Framework 

A functional testbed analogous to a pre-flight checklist: each gate evaluates whether 

calibrated uncertainty signals behave as expected (e.g., triggering escalation when 

entropy exceeds thresholds, reducing variance, preserving accuracy on stable items, etc.). 

We evaluate the framework in a pilot-scale study across two families of instruction-tuned models 

(Qwen 2.5 and Mistral-Nemo). Results show that one model—Mistral-Nemo-Instruct—achieves 

successful alignment with ψ* and passes all seven validation gates. Two smaller models fail 

alignment, revealing a possible boundary condition: cross-model entropy calibration may require 

shared architectural or training properties. Importantly, the 7-gate framework surfaced real 

implementation errors during testing, demonstrating that structured uncertainty diagnostics can 

meaningfully constrain development. 

 

 

Personal Motivation 
For me, this question of detecting instability is not abstract. As someone with dyslexia, I have 

spent decades paying close attention to subtle markers of when my own reasoning becomes 

unstable—when visual processing falters and I must shift modalities to preserve clarity. That 

lived experience shaped the design of HDT²: a system that observes uncertainty, contextualizes 

it, classifies its state, and adjusts its behavior accordingly. While this paper confines itself to 



LLM behavior, the underlying intuition is the same: cognitive systems, biological or artificial, 

often signal the edges of their competence through measurable uncertainty patterns. 

Contributions 
This pilot study contributes: 

• A transferable entropy-band framework (ψ*) for cross-model reasoning stability 

detection. 

• An unsupervised calibration method (UNSUP_H_ALIGN) requiring no labels or task-

specific data. 

• A reproducible 7-gate validation protocol grounded in functional behavior rather than 

architectural assumptions. 

• A complete transparency package including calibration artifacts, failures, debugging 

steps, and executable code. 

• Empirical evidence that cross-model entropy calibration is feasible under certain 

conditions and fails under others—providing constraints for future theory. 

The goal of HDT² is not to solve hallucination detection, but to establish empirical footing for 

entropy-based reasoning diagnostics and to present the first evidence that such diagnostics 

may generalize beyond a single model. 

 

 

 

 

 

 

 

 

 

 

  



2 Related Work & Conceptual Background 
LLM hallucination, uncertainty estimation, and calibration are widely studied problems, yet most 

existing approaches remain model-specific or require supervision. This section surveys relevant 

lines of work and situates HDT² within them. 

 

2.1 Uncertainty Estimation in Large Language Models 
Logit-Based Confidence and Perplexity 
Token log-probabilities and derived measures (e.g., perplexity, entropy, variance) are the most 

common proxies for confidence in generative models. Prior work typically uses: 

• Per-token logit entropy as a soft confidence estimate 

• Sequence-level perplexity as a fluency or coherence indicator 

• Sampling variance across temperature sweeps or stochastic decodes 

• Calibration curves evaluating alignment between predicted probabilities and empirical 

correctness 

These methods are intra-model—they measure uncertainty within a single model’s output space. 

They do not generally transfer across architectures due to differences in vocabulary distribution, 

training corpus, scaling behavior, and logit geometry. 

Ensemble and Monte Carlo Approaches 
Another family of methods quantifies uncertainty by inducing diversity: 

• MC Dropout 

• Temperature-based ensembles 

• Stochastic sampling under fixed prompts 

These approaches are compute-intensive and again model-specific: the “spread” of samples 

reflects architectural variance, not a standardized uncertainty scale. 

Classifier-Based Hallucination Detection 
Some recent work applies supervised classifiers trained to detect hallucinations from: 

• Hidden-state patterns 

• Output text features 

• Rationale consistency 

However, these require labeled datasets and retraining for each model or domain. 

Gap: None provide a portable, model-agnostic uncertainty signal. 

 

2.2 Entropy as an Uncertainty Metric 
Shannon entropy remains a canonical measure of uncertainty in probabilistic systems. For LLMs, 

token-level entropy captures: 

• Breadth of the model’s predictive distribution 

• Ambiguity in token choice 

• Divergence from high-confidence states 

Prior work has shown correlations between high entropy and hallucination likelihood, but 

primarily for: 

• A single model 

• A fixed task domain 

• A fixed decoding setup 



What is unknown is whether the shape of entropy distributions is stable across different model 

families, and if not, whether they can be brought into alignment via post-hoc transformation. 

 

2.3 Calibration Methods in Machine Learning 
Temperature Scaling and Platt Scaling 
In classification models, calibration techniques such as: 

• Temperature scaling 

• Platt scaling (logistic calibration) 

• Isotonic regression 

are used to align probability estimates with empirical accuracy. These methods require labeled 

validation data and typically operate on logits or softmax outputs. 

LLM uncertainty is more difficult: 

• Generative, not classification 

• Structured outputs rather than single labels 

• Token-level dependencies 

• No agreed-upon “gold” uncertainty signal 

Our Distinction 
HDT² departs from prior work in two ways: 

1. Unsupervised: It aligns token-entropy distributions using quantile matching—no labels, 

no correctness data. 

2. Cross-model: It attempts to place different models into a shared entropy geometry 

anchored by a reference ψ* distribution. 

This is closer to distributional alignment than probability calibration. 

 

2.4 Cross-Model Behavior Alignment 
There is emerging interest in finding universal signals that extend across model families: 

• Logit-lens analyses show shared intermediate representations in transformers. 

• Behavioral probing reveals that structurally different models may exhibit similar 

gradients of hesitation, uncertainty, or instability under specific prompt conditions. 

• Unsupervised representation alignment (e.g., via linear probes) suggests that many 

LLMs exhibit partially compatible internal geometries. 

HDT² extends this line of inquiry by treating entropy itself as the alignment substrate—testing 

whether models can be brought into a shared uncertainty space through affine transformation and 

quantile constraints. 

 

2.5 Structured Cognitive Uncertainty Signals 
A smaller body of work explores uncertainty as a dynamic signal rather than a static value: 

• OODA loops (Observe–Orient–Decide–Act) formalize adaptive decision workflows. 

• Cognitive architectures (e.g., Soar, ACT-R) treat uncertainty as part of reasoning 

control. 

• Metacognition research studies how biological systems detect their own limits. 



HDT² draws methodological inspiration from these systems—not as biological claims, but as 

design patterns: treating uncertainty as an operational signal that can trigger routing, 

stabilization, or escalation. 

This connection motivates the Ω–Δ–Φ–Ψ operator structure: 

• Ω: Observe entropy 

• Δ: Orient relative to ψ* bands 

• Φ: Classify the state 

• Ψ: Act (proceed, adjust, escalate) 

In this paper, these operators serve purely as organizing principles for the calibration and gating 

pipeline. 

 

2.6 Positioning HDT² 
HDT² is best understood as a control-theoretic approach to uncertainty: 

• ψ* provides the reference distribution 

• UNSUP_H_ALIGN provides the mapping 

• Gates 1–7 provide the validation constraints 

• Routing and actuation provide the control outputs 

Unlike prior hallucination-detection methods, HDT² does not: 

• train new classifiers 

• access hidden states 

• rely on ensembles 

• require labels 

• alter the model’s parameters 

It is a post-hoc, read-only, model-agnostic mechanism designed to evaluate whether calibrated 

entropy bands can serve as indicators of reasoning stability. 

This work provides the first empirical evidence—albeit in a pilot-scale setting—that: 

1. Some models can be aligned to ψ* 

2. Others cannot 

3. Successful alignment enables reproducible behavioral predictions under the 7-gate 

framework 

 

 

 

 

 

 

 

 

  



3 The HDT² Framework 
HDT² provides a structured, model-agnostic method for identifying reasoning instability through 

calibrated token-level entropy signals. 

It consists of three core components: 

1. ψ* — Reference entropy bands derived from a chosen model 

2. UNSUP_H_ALIGN — An unsupervised alignment procedure mapping a target model 

into ψ* 

3. Ω–Δ–Φ–Ψ operator pipeline — A control-style structure for observation, orientation, 

classification, and action 

This section describes each component in detail. 

 

3.1 Operational Roles of the Ω–Δ–Φ–Ψ Operators 
The Ω–Δ–Φ–Ψ operators function as an organizational scaffold for the calibration and validation 

process. 

They impose no architectural requirements on the model and do not alter generation. 

Instead, they specify how entropy is interpreted and acted upon. 

Ω (Observe) 
Ω represents direct measurement of token-level entropy: 

�� = − �
�

��	

�,�log � 
�,� 

where 
�,� is the renormalized probability of token (i) among the top-k logits at timestep (t). 

Ω collects all raw entropy traces: 

{�	, ��, … , ��}. 
Δ (Orient) 
Δ situates the observed entropy values relative to the ψ* band structure. 

Given a band partition: 

• stable 

• risky_low 

• risky_high 

• extreme 

Δ computes: 

state(��) = bin(�� ∣ �\*) 

This stage provides context: “Where does this entropy value sit relative to expected ranges?” 

Φ (Classify) 
Φ translates the banded state into a decision category: 

• stable → continue 

• risky → monitor closely 

• extreme → escalate or halt 

Formally: 

Φ(��) = �(state(��); �\*) 

The function (f) is deterministic, bounded, and independent of model internals. 

 

 



 

Ψ (Act / Reflect) 
Ψ specifies the downstream behavior that occurs when Φ identifies instability: 

• allow generation to proceed 

• adjust decoding parameters 

• terminate generation and route to a fallback (human, safer model, etc.) 

• log the event for forensic transparency 

In this work, Ψ is restricted to read-only control: 

• No logits modified 

• No tokens inserted 

• No gradients or fine-tuning 

• Actuation only changes external process state (e.g., “stop generation”) 

This ensures that HDT² does not interfere with the model's internal dynamics. 

 

3.2 Reference Entropy Bands (ψ*) 
ψ* encodes the empirical uncertainty structure of a designated reference model. 

It is derived by sampling entropy values from diverse, neutral text contexts. 

Band Definition 
Let �� denote the 
-th quantile of the entropy distribution. 

We define: 

�\* = {
stable: [��!, �"!]

risky_low: [0, ��!)
risky_high: (�"!, �%&]

extreme: (�%&, ∞)
 

These thresholds are not semantic categories; they are purely statistical partitions that become 

meaningful after alignment. 

Empirical ψ* from Qwen 2.5-14B 
For the reference model used in this study: 

• stable: 0.0837–2.1661 bits 

• risky_low: 0–0.0837 bits 

• risky_high: 2.1661–2.7049 bits 

• extreme: >2.7049 bits 

These specific values are not universal; only the structure of ψ* is fixed. 

 

3.3 UNSUP_H_ALIGN: Unsupervised Cross-Model 

Entropy Alignment 
UNSUP_H_ALIGN postulates that, for sufficiently similar transformer models, entropy 

distributions differ primarily by linear distortion, and can therefore be aligned via an affine 

mapping: 

�( = )� + +. 
Purpose 

• Align target model entropy to ψ* 

• Require no labels, no task data, and no intervention in model internals 



• Enable ψ* to function as a common uncertainty geometry for different LLMs 

Calibration Procedure 
Let ,ref be the entropy distribution of the reference model on the calibration shard, and ,tgt the 

distribution for the target model. 

We fit scalars (a, b) by minimizing quantile deviation across a fixed set of anchors (here: Q25, 

Q50, Q75): 

), + = arg min � ∣ ��(,ref) − ()��(,tgt) + +) ∣
�∈{�!,!&,"!}

. 

Alignment Validation 
A target model is considered aligned if: 

• max quantile error ≤ 5% of ref range 

• median quantile error ≤ 3% of ref range 

This becomes Gate 0: 

If a model cannot be aligned, downstream interpretation of ψ* is not meaningful. 

Empirical Outcomes 
In this study, 

• Mistral-Nemo-Instruct satisfied alignment thresholds 

• Qwen 2.5-7B and Mistral-7B did not 

These failures are treated as data, not defects: they define the boundary of ψ* generalizability. 

 

3.4 Policy and Actuation Layer 
Once entropy is aligned to ψ*, Φ assigns bands and Ψ determines how the system should behave. 

State Classifier 
def classify(H, psi_star): 

    if psi_star.stable.low <= H <= psi_star.stable.high: 

        return "stable", "expected_correct" 

    elif H > psi_star.risky_high: 

        return "risky_high", "expected_uncertain" 

    else: 

        return "risky_low", "expected_uncertain" 

This rule is intentionally simple: 

• deterministic 

• monotonic 

• architecture-independent 

• no hidden heuristics 

Actuation Logic 
In this work Ψ may: 

• continue (stable) 

• monitor (risky) 

• escalate (extreme) 

Escalation triggers a hard external stop: 
max_new_tokens := 0 

route_to_human := true 

All actuation events are written to transparent logs for later inspection. 

 



3.5 Interpretation: Control-Theoretic Structure 
Viewed abstractly: 

• ψ* serves as a reference distribution 

• UNSUP_H_ALIGN provides a mapping into that space 

• Φ provides state estimation 

• Ψ provides routing control 

• The 7-gate framework provides formal constraints for testing correctness 

The key methodological contribution is that none of this requires access to model weights or 

training data: it is fully post-hoc and read-only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 Experimental Setup 
This section describes the computational environment, data sources, sampling procedures, 

calibration methodology, and evaluation metrics used in this pilot study. All design choices 

emphasize reproducibility and transparency rather than scale. 

 

4.1 Infrastructure 
All experiments were conducted on a private inference cluster configured as follows: 

• Server platform: SimplePod GPU instance 

• GPUs: 4× NVIDIA A40 

• Inference engine: vLLM (commit hash recorded in artifact bundle) 

• Batching: Disabled for entropy sampling (one-request-per-run) 

• Framework: Python 3.11, HuggingFace Transformers (for tokenizer standardization) 

• Determinism: 

o seed = 1234 fixed for all model runs 

o top_k = 20, renormalized for entropy 

o Greedy decode unless otherwise specified 

This environment ensures that entropy traces depend only on the model’s forward pass, not on 

cluster-level scheduling or nondeterministic parallelism. 

 

4.2 Models Evaluated 
Two families of instruction-tuned models were selected: 

1. Qwen 2.5 family 

o Qwen2.5-14B-Instruct (reference model) 

o Qwen2.5-7B-Instruct (alignment fail) 

2. Mistral family 

o Mistral-Nemo-Instruct-2407 (alignment pass) 

o Mistral-7B-v0.3-Instruct (alignment fail) 

These models were chosen to test whether ψ* and UNSUP_H_ALIGN generalize across: 

• parameter counts 

• training corpora 

• RLHF procedures 

• tokenizer differences 

No model was fine-tuned, modified, or compensated; all runs use public checkpoints. 

 

4.3 Phase C: ψ* Reference Distribution Construction 
Data Source 
To derive ψ*, we sampled the reference model (Qwen2.5-14B-Instruct) on a neutral text shard 

containing: 

• 5,632 characters 

• mixture of encyclopedia narrative, expository prose, and general-domain text 

• no adversarial or domain-specialized content 

The shard is included in the artifact bundle, with SHA-256 fingerprint recorded. 



Sampling Procedure 
• Max tokens: 1 (single-token probes) 

• Prompts: Deterministic slices of the shard 

• Greedy decode: temperature = 0.0 

• Top-k distribution: k = 20, renormalized 

• Entropy: Shannon entropy in bits, per token 

This produces an entropy sample set: 

,ref = {�	, … , �3}, 4 ≈ 4096. 
ψ* bands were computed from the quantiles (Q25, Q50, Q75, Q90) of this distribution. 

 

4.4 UNSUP_H_ALIGN Calibration on Target Models 
For each target model, we collected entropy using the same shard and the same sampling 

procedure to produce: 

,tgt = {�	( , … , �9( }. 
We then computed the affine mapping: 

�(( = )�( + + 

by aligning quantiles Q25, Q50, Q75 of ,tgt to those of ,ref 

Alignment Thresholds 
A model is considered aligned if: 

• max quantile error ≤ 5% of (�"! − ��!)ref 

• median quantile error ≤ 3% 

These thresholds were declared before experimentation and not tuned. 

Outcome Summary 
Model Alignment Result Max Error Median Error 

Qwen2.5-14B Reference 0.0% 0.0% 

Mistral-Nemo-2407 PASS 3.8% 1.9% 

Qwen2.5-7B FAIL 8.4% 4.8% 

Mistral-7B-v0.3 FAIL 11.2% 6.9% 

Only models passing this gate proceed to behavioral validation. 

 

4.5 Prompt Set for Behavioral Evaluation 
For Gate 1–7 evaluation, we used a 60-prompt set containing 12 task families: 

• factual QA 

• commonsense reasoning 

• chain-of-thought math 

• short analytic tasks 

• definition expansion 

• summarization 

• analogy generation 

• classification 

• reasoning under uncertainty 

• instruction following 

• safety-neutral tasks 

• open-domain prompts 



The prompt set is not intended to be exhaustive; it is purpose-built to produce varied entropy 

dynamics across short generations. 

Labeling for Accuracy-Based Gates 
For gates requiring correctness (Gate 3, Gate 6): 

• correctness was labeled manually 

• binary scoring was used (correct / incorrect) 

• ambiguous or multi-validity responses were excluded 

This keeps accuracy metrics interpretable at pilot scale. 

 

4.6 Generation Settings for Gates 1–7 
During validation: 

• Temperature: 0.7 

• Max tokens: 96 

• Top-k for entropy: 20 

• Sampling: Greedy for entropy measurement, but model output uses the above decode 

settings 

• Seed: Fixed per prompt for reproducibility 

• Logging: 

o entropy per token 

o ΔH per token 

o actuator decisions 

o timing 

o route-to-human events 

o JSON logs for each prompt/step 

This ensures deterministic evaluation of ψ*-band behavior while leaving output generation in a 

realistic decoding regime. 

 

4.7 Metrics Used Across the Gates 
Token Entropy (H) 
Entropy of renormalized top-k logits. 

Entropy Change (ΔH) 
Δ�� = �� − ��;	. 

Used in escalation-sensitive gates. 

Entropy Variance (σ²) 
Compared between: 

• Track A: Uncalibrated baseline 

• Track B: Aligned ψ*-band policy execution 

Used in Gate 2. 

Accuracy 
Binary correctness label of the final answer. 

Escalation Rate 
Fraction of generations where: 

Φ(state) = extremeandΨ(act) = stop. 
Overhead (Latency) 



Difference in step-level runtime between Track A and B. 

 

4.8 Evaluation Protocol Summary 
The sequence of operations is: 

1. Construct ψ* from reference model 

2. Run UNSUP_H_ALIGN on each target model 

3. Select aligned models 

4. Evaluate them on 60-prompt set under two tracks 

5. Compute gate metrics (1–7) 

6. Validate pass/fail 

7. Document failures and debugging steps 

This pipeline forms the reproducible basis for the results in Section 5. 

 

 

  



5 Validation: The 7-Gate Framework 
The HDT² framework proposes that once a model is aligned to the ψ* entropy geometry, 

calibrated entropy bands will exhibit reliable behavioral signatures. To test this claim, we 

evaluate aligned models under a structured, seven-gate checklist analogous to pre-flight 

validation. Each gate targets a distinct property of a well-functioning uncertainty diagnostic: 

control, variance, accuracy, escalation, safety, computational cost, and reproducibility. 

Only Mistral-Nemo-Instruct-2407 passed UNSUP_H_ALIGN (Gate 0) and thus proceeded 

through the 7-gate validation pipeline. 

Models failing alignment (Qwen2.5-7B, Mistral-7B) are documented as unalignable under 

current ψ* and excluded from deeper behavioral testing. 

 

5.1 Gate Design Philosophy 
Each gate tests a specific hypothesis: 

1. Gate 1: The system actually implements control signals correctly. 

2. Gate 2: Calibration reduces entropy variance. 

3. Gate 3: Stable bands correlate with correctness. 

4. Gate 4: Extreme-band entropy reliably triggers escalation. 

5. Gate 5: Added overhead is acceptably small. 

6. Gate 6: Safety is preserved—no degradation on safe prompts. 

7. Gate 7: Behavior is reproducible under fixed seeds. 

Together these gates validate the functionality of the ψ*-aligned policy. 

 

5.2 Gate 1 — Functional Control 
Claim 
Actuation must correctly follow Φ’s decision state. 

If ψ* flags an entropy value as extreme, the system must: 

• set route_to_human = true 

• set max_new_tokens = 0 

• terminate the generation 

Test 
For all steps in all prompts: 

state(��) = extreme   ⇒   Ψ(act) = hard-stop. 
Result: PASS 
After early debugging (Section 5.8), all extreme-band states correctly triggered immediate 

termination with 100% coverage. 

 

5.3 Gate 2 — Entropy Variance Reduction 
Claim 
If ψ*-aligned bands are meaningful, Track B (calibrated) should exhibit less entropy variance 

than Track A (baseline). 

>?�(�) < >A�(�) 

 



Test 
Compute per-prompt entropy variance for both tracks across all 60 prompts. 

Result: PASS 
Variance reduction was observed in 58/60 prompts; the two non-reducing prompts remain 

documented in artifacts. 

This indicates that ψ* exerts a stabilizing influence on entropy trajectories without modifying 

logits or generation. 

 

5.4 Gate 3 — Accuracy Correlation 
Claim 
Responses produced while generation remains in the stable band should exhibit higher 

correctness rates than responses dominated by risky/high-risk entropy. 

Test 
Compute accuracy of outputs categorized by dominant band: 

• Stable-dominant 

• Risky-dominant 

• Extreme (almost always escalated) 

Result: PASS 
Stable bands showed higher accuracy than risky bands. 

This does not claim causal relationship—only predictive correlation consistent with diagnostic 

usefulness. 

 

5.5 Gate 4 — Escalation Behavior 
Claim 
Extreme-band entropy should reliably predict instability and trigger escalation. 

Test 
For every step: 

�� > �%&
C\* ⇒ Ψ(act) = stop 

Result: PASS 
After fixing a routing bug (Section 5.8), all extreme-band states correctly resulted in escalation. 

This demonstrates that ψ* can act as a thresholded routing mechanism. 

 

5.6 Gate 5 — Computational Overhead 
Claim 
The HDT² controller imposes minimal runtime penalty. 

Test 
Measure latency difference between Track A and Track B. 

Result: PASS 
Overhead remained below 10% for all prompts. 

This is expected because: 

• Entropy computation uses a single top-k slice 

• No logits are altered 



• Actuation uses fixed-cost conditionals 

 

5.7 Gate 6 — Harm / Safety Preservation 
Claim 
Applying ψ* should not degrade performance on safe prompts or reduce the model’s ability to 

answer correctly when uncertainty is low. 

Test 
Compare accuracy on stable-band prompts in: 

• baseline (Track A) 

• calibrated (Track B) 

Result: PASS 
No measurable degradation; accuracy remained effectively identical. 

This confirms that ψ* does not reduce model capability on low-uncertainty inputs. 

 

5.8 Gate 7 — Reproducibility 
Claim 
Given fixed seeds and decoding settings, the aligned ψ*-based pattern should reproduce reliably. 

Test 
Run Track B twice under fixed seeds and compare: 

Δ��
(	) − Δ��

(�)
 

Require: 

• variance < 0.01 

• identical actuation traces 

• identical escalation positions 

Result: PASS 
Both runs matched actuation logs exactly, and δH variance stayed below the threshold. 

 
5.9 Debugging Journey (Transparency Notes) 
A central purpose of the gate framework is to catch early implementation errors. 

In this pilot, several real issues surfaced: 

1. Prompt ID mismatch (p# vs f#) 

o Caused incorrect attribution of entropy metrics 

o Fixed by unifying ID schema 

2. Escalation logic error 

o Extreme-band states weren’t always triggering stop 

o Resolved by correcting control flow around Φ→Ψ transitions 

3. Syntax error in checker 

o Variance computation silently failed 

o Debugged post-hoc via gate-structured review 

4. Incorrect ΔH threshold in early prototype 

o Misinterpreted extreme-band threshold 

o Corrected after comparing artifacts to ψ* JSON 



These failures were recorded, fixed, and re-tested. 

The 7-gate process thus serves as a functional correctness harness for calibrated uncertainty 

signals. 

 

5.10 Summary of Gate Outcomes 
Gate Description Status 

0 UNSUP_H_ALIGN (affine fit) PASS for Mistral-Nemo; FAIL for two 7B models 

1 Functional control PASS 

2 Variance reduction PASS 

3 Accuracy correlation PASS 

4 Escalation reliability PASS 

5 Overhead PASS 

6 Harm prevention PASS 

7 Reproducibility PASS 

Mistral-Nemo is the only model that passed all gates and is therefore considered ψ*-compatible 

under the present method. 

  



6 Results & Analysis 
This section summarizes the primary empirical findings of the HDT² pilot study. 

We analyze (1) cross-model entropy alignment outcomes, (2) performance on the 7-gate 

framework, and (3) what these results suggest about the generalizability and limitations of ψ*-

based reasoning diagnostics. 

 

6.1 Cross-Model Calibration Outcomes 
UNSUP_H_ALIGN is the prerequisite for all subsequent analysis. 

Only models satisfying the quantile-alignment thresholds (max error ≤5%, median ≤3%) are 

considered ψ*-compatible. 

Table 1 — Alignment Results 
Model Params Max Error Median Error Status 

Qwen 2.5-14B (ref) 14B 0.0% 0.0% Reference 

Mistral-Nemo-2407 12B 3.8% 1.9% PASS 

Qwen 2.5-7B 7B 8.4% 4.8% FAIL 

Mistral-7B-v0.3 7B 11.2% 6.9% FAIL 

Interpretation 
These outcomes reveal two important observations: 

1. ψ* is not universally alignable 

The two 7B models exceed the predefined error thresholds, suggesting that ψ* captures a 

particular entropy geometry found in medium-size and larger transformer models, but not 

necessarily in smaller or differently trained ones. 

2. Alignment appears architecture-sensitive 

Both failures occurred in models with lower parameter counts and different training 

distributions. 

This suggests an emerging hypothesis: shared scaling behavior and training regime may 

be prerequisites for ψ*-compatibility. 

Failing alignment is not considered a defect; it defines where the current method no longer 

applies. 

 

6.2 Behavioral Validation (Gates 1–7) 
Only Mistral-Nemo-Instruct progressed to behavioral evaluation. 

Figure 1 — Gate Summary 
(Already presented in Section 5.) 

All 7 gates passed after debugging corrections. 

Here we analyze the behavioral signatures that emerged. 

 

6.3 Entropy Profile Stabilization 
Track B (ψ*-aligned policy) exhibited noticeably smoother entropy trajectories. 

Observation 
Across 60 prompts: 

• Track A (baseline) showed entropy spikes in ~40% of samples 



• Track B reduced both frequency and amplitude of spikes 

• Prompt-to-prompt variance decreased for 58/60 items 

 

 

Interpretation 
This stabilization indicates that ψ*-aligned uncertainty classification is coherent with the 

model’s internal reasoning dynamics, even though HDT² does not modify logits or perform 

interventions. 

This supports the view that entropy contains latent structure predictive of instability. 

 

6.4 Accuracy Patterns Across Bands 
Accuracy rates by dominant-band classification: 

Band Accuracy 

Stable Higher, statistically dominant 

Risky Lower 

Extreme Usually escalated; accuracy not applicable 

Interpretation 
This result is critical: 

It demonstrates that entropy bands do correlate with output reliability, even though they are 

derived from a different model. 

However, correlation does not imply causal explanation. 

The calibrated bands serve as a predictive diagnostic, not a justification for why errors occur. 

 

6.5 Escalation Reliability 
Extreme-band states consistently triggered immediate escalation (after corrections). 

This confirms that: 

• ψ* extreme thresholds can serve as routing boundaries 

• Escalation is not triggered by noise 

• The controller logic is internally consistent 

Implication 
ψ* can function as a stop condition for hallucination-prone states, without requiring task labels 

or semantic knowledge. 

 

6.6 Safety and Non-Degradation 
Stable-band prompts showed no performance degradation when ψ* was applied. 

Interpretation 
This addresses a typical reviewer concern: 

• Safety layers sometimes reduce capability 

• ψ* did not 

• The read-only design maintains model expressiveness 

This supports ψ* as minimally invasive. 



6.7 Failure Cases (Alignment Level) 
Although these models never reached Gates 1–7, their failures are informative. 

Qwen 2.5-7B 
• Lower entropy values across the board 

• Compressed distribution 

• Affine map insufficient to recover ψ* shape 

Mistral-7B 
• High skew and heavy tail 

• Extreme quantile divergence 

• Suggests different uncertainty geometry 

Interpretation 
These models highlight a boundary condition: 

ψ* may require scale, training diversity, or architectural similarity to the reference model for 

meaningful alignment. 

This is a direction for future theoretical work (Section 8). 

 

6.8 What We Learned 
Successes 

• Cross-model entropy alignment is feasible (at least for one model). 

• Aligned bands predict accuracy. 

• Calibration stabilizes entropy without modifying generation. 

• The 7-gate framework reliably catches bugs and validates behavior. 

• ψ* can serve as a model-agnostic uncertainty geometry when alignment is achieved. 

Limitations 
• ψ* is not universal: smaller models diverge. 

• Behavioral claims depend on the alignment condition (Gate 0). 

• Sample size (N=60) remains pilot-scale. 

• Results describe structured uncertainty, not hallucination elimination. 

Most Important Insight 
Failure cases are as informative as success: 

• They demonstrate the boundaries of ψ* generalization 

• They show that “entropy geometry” is not shared across all LLMs 

• They validate the importance of UNSUP_H_ALIGN as Gate 0 

This distinction protects the scientific integrity of the framework: 

ψ* is applicable when alignment holds, not universally. 

  



7 Discussion 
The goal of this pilot study was not to prove that entropy-band calibration solves hallucination, 

but to evaluate whether a model-agnostic uncertainty geometry—ψ*—can be established across 

different LLMs, and whether this geometry exhibits functional behavioral signatures. The 

findings reveal both the promise and the limits of this approach. 

 

7.1 Why Some Models Did Not Align 
A key outcome is that ψ* was not universally alignable. 

Two 7B models—Qwen2.5-7B and Mistral-7B—failed Gate 0 (UNSUP_H_ALIGN). 

Possible Factors 
1. Scale Effects 

Smaller models often exhibit sharper entropy spikes and narrower distributions. 

Their uncertainty geometry is structurally distinct from that of a 12B or 14B model. 

2. Training Divergence 

Differences in pretraining corpora, RLHF strategy, and vocabulary distribution alter 

entropy profiles in ways that cannot be corrected with a simple affine map. 

3. Entropy Compression 

Some models produce systematically lower entropy due to aggressive instruction tuning 

or shortcut heuristics. 

Interpretation 
ψ* is not a universal geometry—it is a family-dependent geometry. 

This is not a flaw. 

It is a crucial empirical constraint defining where the method applies and where further theory is 

required. 

 

7.2 ψ* as a Portable Uncertainty Geometry 
For the one model that did align (Mistral-Nemo), ψ* provided: 

• stable entropy trajectories 

• predictable accuracy gradients 

• reliable escalation when entropy exceeded thresholds 

• minimal overhead 

• reproducible behavior 

Why This Matters 
Most hallucination detection methods require: 

• supervised data 

• ensembles 

• internal access to activations 

• model-specific calibration 

• parameter modification 

ψ* requires none of those. 

It provides a portable, read-only diagnostic for detecting reasoning instability, conditioned on 

successful alignment. 



This conditionality is essential: 

ψ* is not claimed to be universal—only that when alignment succeeds, the bands convey useful 

behavioral structure. 

 

7.3 Comparison to Prior Work 
HDT² differs from previous hallucination-detection methods in four ways: 

1. Unsupervised Calibration 

No correctness labels or domain tuning are used. 

2. Cross-Model Definition 

ψ* defines uncertainty regions not for one model, but as a shared reference geometry. 

3. Control-Theoretic Framing 

The Ω–Δ–Φ–Ψ structure positions entropy as a signal in a diagnostic loop, rather than as 

a raw statistic. 

4. Structured Validation 

The 7-gate protocol evaluates function, stability, accuracy correlation, safety, overhead, 

and reproducibility. 

Where HDT² Is Similar 
• Like perplexity-based methods, it uses token entropy. 

• Like calibration literature, it aligns distributions. 

• Like safety layers, it supports escalation. 

Where HDT² Is Distinct 
• It attempts cross-model normalization of uncertainty. 

• It uses endo-structural tests rather than classification labels. 

• It documents failure cases as part of the scientific result. 

 

7.4 Implications for LLM Reliability 
If ψ* alignment succeeds: 

• entropy bands behave predictably 

• extreme entropy consistently signals instability 

• stable bands correlate with correctness 

• entropy becomes a meaningful decision boundary 

If ψ* alignment fails: 
• the model’s uncertainty geometry does not match ψ* 

• applying the controller would be arbitrary 

• downstream gates would no longer test the HDT² hypothesis 

This creates a clear methodological boundary: 

HDT² can only be applied where Gate 0 holds. 

This protects the framework from overclaiming and guides future research toward understanding 

the structural factors that determine alignability. 

 

 

 



7.5 Limitations of This Pilot 
This work is intentionally limited: 

• Sample size is small (N=60 prompts). 

• ψ* derived from a single reference model. 

• Affine alignment may be insufficient for models with non-linear entropy distortions. 

• Accuracy correlation does not imply causation. 

• No comparison against perplexity or ensemble baselines yet. 

The contribution is therefore directional, not definitive. 

 

7.6 Toward Broader Systems and Applications 
If ψ* alignment can be extended more broadly, applications include: 

• Routing systems that escalate when reasoning becomes unstable 

• Real-time monitoring of long-chain reasoning tasks 

• Model health dashboards using entropy drift as an early indicator 

• Safety layers for open-ended chat systems 

• Cross-model consistency protocols for multi-agent environments 

These applications require larger-scale evaluation, but the present pilot provides the conceptual 

foundation. 

 

7.7 Personal Reflection (Author Voice) 
This work originated from a long-standing question in my own life: 

how do you know when your reasoning is becoming unstable? 

As someone with dyslexia, I have learned to identify small, subtle signals—shifts in clarity, 

emerging friction, rising cognitive turbulence—that indicate it is time to shift modality or slow 

down. These lived markers of instability inspired the structure of HDT²: 

• Ω: notice the signal 

• Δ: understand its context 

• Φ: classify the state 

• Ψ: respond accordingly 

The fact that a similar structure appears to have measurable utility in LLMs is both encouraging 

and intellectually intriguing. 

However, this parallel is presented as motivation, not evidence: the present work confines itself 

to empirical behavior in machine systems. 

 

7.8 Scientific Positioning 
HDT² should be viewed as: 

• a falsifiable method, not a claim about cognitive universals 

• a diagnostic protocol, not a path to eliminating hallucination 

• a structured experiment, not a theory of intelligence 

• a pilot result, not a sweeping generalization 

What this work demonstrates is that entropy carries structured information about reasoning 

stability, and that this information can sometimes be normalized across models. 



The failure cases are equally important: they reveal structural differences in model uncertainty 

behavior and define the scope of ψ*. 

 

  



8 Limitations & Future Work 
This pilot study demonstrates that entropy-band calibration (ψ*) and unsupervised alignment 

(UNSUP_H_ALIGN) can yield meaningful reasoning diagnostics for at least one model. 

However, the method in its current form has clear limitations. This section enumerates those 

limitations explicitly and outlines directions for future research. 

 

8.1 Current Limitations 
(1) Pilot Scale (N = 60 prompts) 
The sample size for behavioral validation is deliberately small. 

While sufficient to test the mechanics of the gate framework, it is not large enough to establish 

statistical stability across domains or tasks. 

Consequence: 

Claims about generality must be cautious; the present work demonstrates feasibility, not 

coverage. 

(2) Single Reference Model (ψ* from Qwen2.5-14B-Instruct) 
All entropy bands were derived from a single reference model. 

Different reference choices may produce different ψ* geometries. 

Consequence: 

We cannot yet say whether ψ* is stable across reference models, or whether each reference 

produces its own local geometry. 

(3) Simple Affine Alignment (H' = aH + b) 
UNSUP_H_ALIGN currently uses an affine transformation aligned to three quantiles (Q25, Q50, 

Q75). 

This assumes that entropy geometry can be linearly transformed across models. 

This assumption held for one model (Mistral-Nemo) but failed for two others. 

Consequence: 

Affine maps may be insufficient to capture non-linear distortions in uncertainty distributions. 

(4) No Comparison Against Baselines Yet 
This study did not include: 

• perplexity thresholds 

• sampling-variance baselines 

• log-prob calibration methods 

• supervised hallucination detectors 

• classifier-based consistency checks 

Consequence: 

We cannot yet quantify how ψ* compares to existing uncertainty measures. 

(5) Unknown Mechanism: Why Does Entropy Predict Accuracy? 
Although entropy-band classification correlates with accuracy, the underlying mechanism 

remains unclear. 

Possibilities include: 

• shared training dynamics across mid-sized transformers 

• common failure patterns in generative reasoning 

• structural relationships between logit dispersion and correctness 



Consequence: 

Without a mechanistic model, ψ*-based diagnostics remain empirical rather than explanatory. 

(6) Limited Model Diversity 
Only four models were tested, all from two families (Qwen, Mistral). 

No evaluations were performed on: 

• Llama-family models 

• Qwen2.5-32B / larger models 

• Gemma-2 

• Architecturally divergent models (Mixture-of-Experts, vision-language models, etc.) 

Consequence: 

We do not yet understand which architectures share entropy geometry with ψ*. 

(7) No Long-Sequence or Multi-Step Reasoning Evaluation 
All generations were capped at 96 tokens. 

Long-chain reasoning tasks may produce qualitatively different entropy phenomena. 

Consequence: 

ψ* may behave differently in chain-of-thought or multi-hop deliberation settings. 

(8) Not a Hallucination Detector (Yet) 
ψ* identifies instability conditions but does not classify hallucinations directly. 

Consequence: 

HDT² is a diagnostic substrate, not a hallucination classifier or safety system. 

 

8.2 Immediate Future Work  
These are the highest-leverage next steps for strengthening the empirical foundation. 

(1) Expand Prompt Set to ≥ 500 Items 
A larger, task-diverse dataset will allow: 

• statistical confidence intervals 

• band-strength analysis 

• sensitivity curves 

• ROC-style evaluation of escalation thresholds 

(2) Cross-Reference Against Perplexity Baselines 
Compare ψ* escalation against: 

• simple perplexity thresholds 

• entropy without alignment 

• sampling variance (temperature sweeps) 

This will quantify added value beyond raw entropy. 

(3) Test Larger Model Grid 
Run UNSUP_H_ALIGN on: 

• Llama-3-8B, 70B 

• Qwen2.5-32B 

• Mistral-Large 

• Gemma-2 and Gemma-2-27B 

• Mixtral MoE models 

This will map the “ψ*-compatible” region of model space. 

 



8.3 Mid-Term Work  
(1) Explore Non-Linear Alignment Methods 
Potential approaches: 

• isotonic regression 

• spline-based mapping 

• mixture-of-Gaussians fitting 

• quantile transport (Wasserstein alignment) 

Goal: 

Determine whether more general transformations restore ψ* alignment for previously 

incompatible models. 

(2) Multi-Model ψ* Compositing 
Instead of a single reference: 

• combine entropy distributions across models 

• compute a consensus ψ* 

• test whether composite bands generalize more widely 

(3) Domain-Specific Calibration 
Evaluate ψ* behavior in: 

• code generation 

• medical question answering 

• scientific reasoning 

• legal/compliance tasks 

• chain-of-thought-heavy domains 

(4) Mechanistic Investigation 
Key research question: 

Why does entropy-band structure correlate with correctness? 

Possible approaches: 

• probing internal activations 

• logit-lens analysis 

• causal scrubbing 

• local geometry analysis of softmax surfaces 

• differential comparison across architectures 

Understanding the mechanism may reveal universal uncertainty signatures. 

 

8.4 Long-Term Work  
(1) Real-World Deployment Studies 
Integrate ψ* into: 

• a routing layer for chat assistants 

• agentic planners 

• code interpreters 

• multi-agent ensembles 

• trust-calibrated systems 

Measure real-world reliability improvements. 

(2) Generalize ψ* Into a Multi-Layer Diagnostic System 
Possible extensions: 



• multi-band entropy curves 

• entropy drift detection 

• internal-state cross-sectional monitoring 

• ψ–Ω feedback loops for adaptive prompting 

• integration into system-level safety controllers 

(3) Cognitive-Theoretic Bridging (Long-Term, Non-Claim-Based) 
Exploratory direction only (not part of the current paper’s claims): 

• compare entropy-band dynamics with human uncertainty tracking 

• test whether ψ* can predict when chain-of-thought becomes unstable 

• explore broader connections between structured uncertainty and reasoning architecture 

This direction remains conceptual and is not required for empirical validation. 

 

  



9 Conclusion 
This work introduced HDT², a pilot framework for entropy-based reasoning diagnostics in large 

language models. The core idea is that token-level Shannon entropy, when normalized through 

an unsupervised alignment procedure (UNSUP_H_ALIGN), can define a portable uncertainty 

geometry—ψ*—shared across at least some model families. When a target model successfully 

aligns to ψ*, predictable behavioral signatures emerge: stabilized entropy trajectories, reliable 

escalation on high-uncertainty states, correlation between stable bands and correctness, and 

consistent actuation under a structured control framework (Ω–Δ–Φ–Ψ). 

These results were demonstrated on a single aligned model (Mistral-Nemo-Instruct-2407). Two 

smaller models failed to align, defining essential boundaries of the method’s applicability. The 7-

gate validation framework proved critical: it not only verified functional behavior but also 

surfaced genuine implementation errors during development, underscoring its utility as a 

correctness harness for calibrated uncertainty systems. 

Importantly, HDT² does not claim to solve hallucination or provide universal uncertainty 

calibration across all LLMs. Rather, it shows—at pilot scale—that entropy distributions contain 

structured information about reasoning stability, and that under specific conditions this structure 

can be normalized across models. Where alignment holds, ψ* becomes a practical, read-only 

diagnostic capable of triggering interpretable routing decisions without modifying model 

parameters or relying on supervised labels. 

The broader implication is that LLM reasoning stability may be partially governed by 

measurable uncertainty geometry. Understanding the limits of this geometry—and the conditions 

under which it can be shared—constitutes a promising direction for future work. The 

transparency of this study, including documented failures and complete reproducibility artifacts, 

provides a foundation for that exploration. 

HDT² is therefore best understood as an early step: a constrained but falsifiable contribution 

toward portable uncertainty diagnostics for machine reasoning. Further empirical expansion, 

theoretical investigation, and systematic comparison with established baselines will be needed to 

determine its full scope and applicability. Yet even at this early stage, the results indicate that 

structured entropy-band calibration offers a tractable and scientifically grounded path forward in 

the pursuit of more reliable AI systems. 

  



10  Related Work and Positioning 
Research on LLM reliability has converged on three broad strategies for obtaining usable 

uncertainty signals: (i) intrinsic, entropy/logit-based diagnostics, (ii) extrinsic supervised 

correctness predictors, and (iii) wrapper methods with formal coverage guarantees. HDT² 

belongs to the first group, but is structurally distinct in how it constructs and tests a portable 

uncertainty geometry. 

Entropy and Logit–Based Hallucination Diagnostics 
A large body of work uses token-level Shannon entropy, perplexity, or related logit statistics as 

proxies for confidence and hallucination risk. Recent methods such as Logits-induced Token 

Uncertainty (LogU / LogTokU) derive token-specific uncertainty directly from logits via 

evidence modeling, enabling real-time hallucination detection without multiple sampling rounds. 

arXiv+1 Other approaches analyze entropy production rate or band tokens into low/high-

uncertainty regimes to drive supervised hallucination classifiers or downstream control 

heuristics. Semantic Scholar+1 

These methods are model-internal and usually model-specific: thresholds or detectors are 

calibrated per model, with no explicit attempt to construct a shared, cross-model entropy 

geometry. In contrast, HDT² uses Shannon entropy as the base signal but introduces a portable 

band structure ψ* derived from a reference model and an explicit unsupervised alignment 

procedure (UNSUP_H_ALIGN) that either brings a target model into that geometry or declares 

it incompatible (Gate 0). 

Generalized Correctness Models (GCM) 
Generalized Correctness Models take a complementary, extrinsic and supervised approach. A 

separate “correctness model” is trained on historical predictions and correctness labels from 

many LLMs, learning patterns that generalize across model families and sizes; these models 

often outperform a given LLM’s own self-confidence when predicting answer correctness. 

arXiv+2arXiv+2 GCMs are thus model-agnostic in deployment, but their portability arises 

from supervised learning over text and metadata, not from shared internal uncertainty geometry. 

HDT² differs in two ways: (i) it uses no correctness labels to construct ψ* or perform 

UNSUP_H_ALIGN, and (ii) its portability is explicitly conditional on satisfying a structural 

compatibility test (Gate 0). GCMs can be viewed as external correctness oracles; HDT² is an 

intrinsic, label-free filter that operates directly on the model’s entropy stream. 

Conformal Uncertainty and Coverage Guarantees 
A third line of work wraps LLMs in conformal prediction to obtain distribution-free coverage 

guarantees. ConU, for example, converts heuristic uncertainty scores into calibrated prediction 

sets for open-ended generation, guaranteeing that correct answers lie in the set with at least a 

user-specified probability. arXiv+2ACL Anthology+2 Subsequent work extends these ideas to 

selective or domain-aware conformal uncertainty. ACL Anthology Related frameworks integrate 

conformal scores into multi-step reasoning pipelines, using global error-rate controllers to keep 

compounded failure rates within bounds. OpenReview+1 

These methods provide strong theoretical guarantees but require labeled calibration sets and 

typically do not interpret the internal geometry of entropy itself. HDT², by contrast, offers no 

formal coverage guarantees at this stage; its contribution is empirical and structural: it shows 

that, under specific conditions, token-entropy distributions can be normalized into a shared 

banded geometry ψ* that carries predictive information about reasoning stability, and that this 

geometry can fail cleanly in incompatible models (Gate 0). 



Entropy as a Control Signal 
Finally, several recent methods use entropy as a control signal for adaptive computation rather 

than as a purely diagnostic metric. “Think Just Enough” uses sequence-level entropy as a 

confidence signal to trigger early stopping in reasoning, saving 25–50% computation while 

preserving accuracy. OpenReview+2arXiv+2 Confidence-aware reasoning controllers similarly 

modulate reasoning depth based on token-level confidence. ACL Anthology+1 

HDT² is aligned with this control-theoretic trend but targets stability and escalation rather than 

efficiency. The Ω–Δ–Φ–Ψ loop turns entropy bands into explicit control actions (continue vs. 

route-to-human), and the seven-gate protocol validates that this control behaves as intended on 

models that pass alignment. Unlike early-stopping work, HDT² also treats alignment failure 

itself as a first-class outcome, documenting where its control law should not be applied. 

Summary of Distinctions 
In summary, HDT² is most closely related to entropy-based hallucination detectors and entropy-

driven control systems, but differs in three key respects: 

1. It treats token-entropy as a shared geometric object ψ* rather than a per-model 

heuristic. 

2. It uses unsupervised quantile alignment to test whether a target model can be 

embedded in that geometry (Gate 0), and reports failures as structural constraints. 

3. It integrates ψ* into a minimal, external control loop (Ω–Δ–Φ–Ψ) plus a seven-gate 

functional checklist, emphasizing falsifiability and operational behavior rather than 

theoretical guarantees. 

These distinctions position HDT² as a conditionally portable, label-free diagnostic substrate 

that can coexist with supervised correctness models and conformal wrappers, and that can be 

combined with them in future work (e.g., ψ* as a filter, GCM as a correctness oracle, CP as a 

guarantee layer). 
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