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HDT? provides the first falsifiable evidence that token-entropy geometry can be normalized
across models to produce a portable, read-only diagnostic for reasoning stability—
revealing both where the method works and where it fundamentally does not.

Abstract

Large language models (LLMs) often generate fluent but incorrect statements, yet there is no
reliable, model-agnostic way to detect when a model’s reasoning is becoming unstable. We present
HDT?, a pilot framework for entropy-based reasoning diagnostics that aims to provide a portable,
read-only uncertainty geometry across models. The method derives entropy bands y* from a
reference model’s token-level Shannon entropy and aligns other models into this geometry through
an unsupervised affine calibration procedure (UNSUP_H_ALIGN) using quantile matching.

We instantiate the framework using four operational operators—( (observe entropy), A (orient
relative to y*), @ (classify state), and ¥ (act via continuation or escalation)—and evaluate it on
four instruction-tuned LLMs from the Qwen and Mistral families. y* is constructed from Qwen
2.5-14B; alignment is then attempted on three target models. One model (Mistral-Nemo-Instruct-
2407) satisfies pre-defined alignment thresholds (<5% max error, <3% median error of the
reference interquartile range) and undergoes a seven-gate validation protocol assessing control
correctness, entropy variance reduction, accuracy correlation, escalation behavior, overhead, and
reproducibility. Two models fail alignment, providing empirical evidence that entropy geometry
is architecture- and scale-dependent.

On the aligned model, y* yields stabilized entropy trajectories, reliable escalation at extreme
bands, and higher correctness rates for stable-band outputs—all without modifying model
parameters. HD'T? does not claim to solve hallucination; instead, it offers falsifiable evidence that
entropy-band calibration can serve as a portable diagnostic substrate for LLM reasoning stability.
All code and artifacts are released for replication and critique.

This work, including the HDT? framework, y calibration method, UNSUP_H_ALIGN algorithm,
gate definitions, and all associated artifacts, is licensed under the Creative Commons
Attribution—-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
Academic and research use is unrestricted. Commercial use requires a separate licensing
agreement from the author.*



1 Introduction

Large language models (LLMs) achieve impressive performance across a wide range of tasks,
yet remain prone to producing fluent but incorrect statements—commonly referred to as
hallucinations. While substantial work has focused on training-time or architecture-level
mitigation, the ability to defect when a model’s reasoning is becoming unstable remains limited.
Existing detection strategies often rely on model-specific confidence signals such as logit-based
perplexity estimates, sampling variance, or domain-specific classifiers. These approaches do not
generalize well across models, architectures, or scales, and therefore cannot provide the
foundation for a transferable, deployment-ready uncertainty monitor.
This work explores a different perspective: token-level Shannon entropy during generation
encodes a measurable signature of reasoning stability. Prior studies have investigated entropy
as a proxy for confidence, but primarily within single-model settings. What remains unknown is
whether relative entropy structure—its distribution, shape, and critical thresholds—can be
calibrated across different models to form a shared uncertainty geometry. If such calibration is
possible, it would offer a pathway toward portable, model-agnostic mechanisms for detecting
reasoning instability.
This paper presents HD'T?, a pilot framework for cross-model uncertainty calibration built on
three key components:
1. Entropy Bands (y*)
Quantile-derived regions of “stable,” “risky,” and “extreme’ uncertainty, defined on a
reference model and used as the common target for other models.
2. UNSUP_H_ALIGN
An unsupervised entropy-alignment protocol that fits an affine transform between a target
model’s entropy distribution and the reference y* geometry—without labels or task
supervision.
3. 7-Gate Validation Framework
A functional testbed analogous to a pre-flight checklist: each gate evaluates whether
calibrated uncertainty signals behave as expected (e.g., triggering escalation when
entropy exceeds thresholds, reducing variance, preserving accuracy on stable items, etc.).
We evaluate the framework in a pilot-scale study across two families of instruction-tuned models
(Qwen 2.5 and Mistral-Nemo). Results show that one model—Mistral-Nemo-Instruct—achieves
successful alignment with y* and passes all seven validation gates. Two smaller models fail
alignment, revealing a possible boundary condition: cross-model entropy calibration may require
shared architectural or training properties. Importantly, the 7-gate framework surfaced real
implementation errors during testing, demonstrating that structured uncertainty diagnostics can
meaningfully constrain development.
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Personal Motivation

For me, this question of detecting instability is not abstract. As someone with dyslexia, I have
spent decades paying close attention to subtle markers of when my own reasoning becomes
unstable—when visual processing falters and I must shift modalities to preserve clarity. That
lived experience shaped the design of HDT?: a system that observes uncertainty, contextualizes
it, classifies its state, and adjusts its behavior accordingly. While this paper confines itself to



LLM behavior, the underlying intuition is the same: cognitive systems, biological or artificial,
often signal the edges of their competence through measurable uncertainty patterns.
Contributions
This pilot study contributes:
e A transferable entropy-band framework (y*) for cross-model reasoning stability
detection.
e An unsupervised calibration method (UNSUP_H_ALIGN) requiring no labels or task-
specific data.
e A reproducible 7-gate validation protocol grounded in functional behavior rather than
architectural assumptions.
¢ A complete transparency package including calibration artifacts, failures, debugging
steps, and executable code.
e Empirical evidence that cross-model entropy calibration is feasible under certain
conditions and fails under others—providing constraints for future theory.
The goal of HDT? is not to solve hallucination detection, but to establish empirical footing for
entropy-based reasoning diagnostics and to present the first evidence that such diagnostics
may generalize beyond a single model.



2 Related Work & Conceptual Background

LLM hallucination, uncertainty estimation, and calibration are widely studied problems, yet most
existing approaches remain model-specific or require supervision. This section surveys relevant
lines of work and situates HDT? within them.

2.1 Uncertainty Estimation in Large Language Models
Logit-Based Confidence and Perplexity

Token log-probabilities and derived measures (e.g., perplexity, entropy, variance) are the most
common proxies for confidence in generative models. Prior work typically uses:

¢ Per-token logit entropy as a soft confidence estimate

e Sequence-level perplexity as a fluency or coherence indicator

e Sampling variance across temperature sweeps or stochastic decodes

e Calibration curves evaluating alignment between predicted probabilities and empirical

correctness

These methods are intra-model—they measure uncertainty within a single model’s output space.
They do not generally transfer across architectures due to differences in vocabulary distribution,
training corpus, scaling behavior, and logit geometry.
Ensemble and Monte Carlo Approaches
Another family of methods quantifies uncertainty by inducing diversity:

e MC Dropout

¢ Temperature-based ensembles

e Stochastic sampling under fixed prompts
These approaches are compute-intensive and again model-specific: the “spread” of samples
reflects architectural variance, not a standardized uncertainty scale.
Classifier-Based Hallucination Detection
Some recent work applies supervised classifiers trained to detect hallucinations from:

e Hidden-state patterns

e Output text features

e Rationale consistency
However, these require labeled datasets and retraining for each model or domain.
Gap: None provide a portable, model-agnostic uncertainty signal.

2.2 Entropy as an Uncertainty Metric
Shannon entropy remains a canonical measure of uncertainty in probabilistic systems. For LLMs,
token-level entropy captures:

¢ Breadth of the model’s predictive distribution

¢ Ambiguity in token choice

e Divergence from high-confidence states
Prior work has shown correlations between high entropy and hallucination likelihood, but
primarily for:

e A single model

e A fixed task domain

¢ A fixed decoding setup



What is unknown is whether the shape of entropy distributions is stable across different model
families, and if not, whether they can be brought into alignment via post-hoc transformation.

2.3 Calibration Methods in Machine Learning

Temperature Scaling and Platt Scaling
In classification models, calibration techniques such as:
¢ Temperature scaling
¢ Platt scaling (logistic calibration)
e Isotonic regression
are used to align probability estimates with empirical accuracy. These methods require labeled
validation data and typically operate on logits or softmax outputs.
LLM uncertainty is more difficult:
e QGenerative, not classification
e Structured outputs rather than single labels
e Token-level dependencies
¢ No agreed-upon “gold” uncertainty signal
Our Distinction
HDT? departs from prior work in two ways:
1. Unsupervised: It aligns token-entropy distributions using quantile matching—no labels,
no correctness data.
2. Cross-model: It attempts to place different models into a shared entropy geometry
anchored by a reference y* distribution.
This is closer to distributional alignment than probability calibration.

2.4 Cross-Model Behavior Alignment
There is emerging interest in finding universal signals that extend across model families:
e Logit-lens analyses show shared intermediate representations in transformers.
» Behavioral probing reveals that structurally different models may exhibit similar
gradients of hesitation, uncertainty, or instability under specific prompt conditions.
e Unsupervised representation alignment (e.g., via linear probes) suggests that many
LLMs exhibit partially compatible internal geometries.
HDT? extends this line of inquiry by treating entropy itself as the alignment substrate—testing
whether models can be brought into a shared uncertainty space through affine transformation and
quantile constraints.

2.5 Structured Cognitive Uncertainty Signals
A smaller body of work explores uncertainty as a dynamic signal rather than a static value:
¢ OODA loops (Observe-Orient—-Decide—A ct) formalize adaptive decision workflows.
e Cognitive architectures (e.g., Soar, ACT-R) treat uncertainty as part of reasoning
control.
e Metacognition research studies how biological systems detect their own limits.



HDT? draws methodological inspiration from these systems—not as biological claims, but as
design patterns: treating uncertainty as an operational signal that can trigger routing,
stabilization, or escalation.
This connection motivates the Q-A—®-Y¥ operator structure:

e Q: Observe entropy

e A: Orient relative to y* bands

e @: (Classify the state

e W: Act (proceed, adjust, escalate)
In this paper, these operators serve purely as organizing principles for the calibration and gating
pipeline.

2.6 Positioning HDT?

HDT? is best understood as a control-theoretic approach to uncertainty:
e * provides the reference distribution
e UNSUP_H_ALIGN provides the mapping
e Gates 1-7 provide the validation constraints
¢ Routing and actuation provide the control outputs
Unlike prior hallucination-detection methods, HDT? does not:
e train new classifiers
e access hidden states
e rely on ensembles
e require labels
e alter the model’s parameters
It is a post-hoc, read-only, model-agnostic mechanism designed to evaluate whether calibrated
entropy bands can serve as indicators of reasoning stability.
This work provides the first empirical evidence—albeit in a pilot-scale setting—that:
1. Some models can be aligned to y*
2. Others cannot
3. Successful alignment enables reproducible behavioral predictions under the 7-gate
framework



3 The HDT? Framework

HDT? provides a structured, model-agnostic method for identifying reasoning instability through
calibrated token-level entropy signals.
It consists of three core components:
1. y* — Reference entropy bands derived from a chosen model
2. UNSUP_H_ALIGN — An unsupervised alignment procedure mapping a target model
into y*
3. Q-A-®-Y operator pipeline — A control-style structure for observation, orientation,
classification, and action
This section describes each component in detail.

3.1 Operational Roles of the Q-A—®-¥ Operators

The Q-A-®-Y operators function as an organizational scaffold for the calibration and validation
process.

They impose no architectural requirements on the model and do not alter generation.

Instead, they specify how entropy is interpreted and acted upon.

Q  (Observe)

Q) represents direct measurement of token-level entropy:

k
Hy = — Z Pt,il0g 2 Pri
i=1

where p, ; is the renormalized probability of token (i) among the top-k logits at timestep (t).
Q) collects all raw entropy traces:
{H{,H,, ..., Hr}.

A (Orient)
A situates the observed entropy values relative to the y* band structure.
Given a band partition:

e stable

e risky_low

e risky_high

e extreme
A computes:

state(H,) = bin(H, | Y"")

This stage provides context: “Where does this entropy value sit relative to expected ranges?”
® (Classify)
® translates the banded state into a decision category:

e stable — continue

e risky — monitor closely

e extreme — escalate or halt
Formally:

®(Hy) = f(state(He); ")

The function (f) is deterministic, bounded, and independent of model internals.



¥ (Act/Reflect)
¥ specifies the downstream behavior that occurs when @ identifies instability:
e allow generation to proceed
e adjust decoding parameters
e terminate generation and route to a fallback (human, safer model, etc.)
¢ log the event for forensic transparency
In this work, ¥ is restricted to read-only control:
e No logits modified
e No tokens inserted
e No gradients or fine-tuning
e Actuation only changes external process state (e.g., “stop generation”)
This ensures that HD'T? does not interfere with the model's internal dynamics.

3.2 Reference Entropy Bands (y*)
y* encodes the empirical uncertainty structure of a designated reference model.
It is derived by sampling entropy values from diverse, neutral text contexts.
Band Definition
Let @, denote the p-th quantile of the entropy distribution.
We define:
stable: [Q2s, @75]
P = risky_low: [0, Q5)
risky_high: (@75, Qo]
extreme: (Qqg, )
These thresholds are not semantic categories; they are purely statistical partitions that become
meaningful after alignment.
Empirical y* from Qwen 2.5-14B
For the reference model used in this study:
e stable: 0.0837-2.1661 bits
e risky_low: 0—0.0837 bits
e risky_high: 2.1661-2.7049 bits
e extreme: >2.7049 bits
These specific values are not universal; only the structure of y* is fixed.

3.3 UNSUP_H_ALIGN: Unsupervised Cross-Model
Entropy Alignment

UNSUP_H_ALIGN postulates that, for sufficiently similar transformer models, entropy
distributions differ primarily by linear distortion, and can therefore be aligned via an affine
mapping:
H' =aH + b.
Purpose
e Align target model entropy to y*
¢ Require no labels, no task data, and no intervention in model internals



¢ Enable y* to function as a common uncertainty geometry for different LLMs
Calibration Procedure
Let D be the entropy distribution of the reference model on the calibration shard, and Dy the
distribution for the target model.
We fit scalars (a, b) by minimizing quantile deviation across a fixed set of anchors (here: Q25,

Q50, Q75):

ab=argmin > | Qy(Dur) — (@Qy (D) + b) I
PE{25,50,75}

Alignment Validation
A target model is considered aligned if:

e max quantile error < 5% of ref range

¢ median quantile error < 3% of ref range
This becomes Gate 0:
If a model cannot be aligned, downstream interpretation of y* is not meaningful.
Empirical Outcomes
In this study,

e Mistral-Nemo-Instruct satisfied alignment thresholds

e Qwen 2.5-7B and Mistral-7B did not
These failures are treated as data, not defects: they define the boundary of y* generalizability.

3.4 Policy and Actuation Layer
Once entropy is aligned to y*, @ assigns bands and ¥ determines how the system should behave.
State Classifier

def classify(H, psi_star):
if psi_star.stable.low <= H <= psi_star.stable.high:

return "stable", "expected_correct"
elif H > psi_star.risky_high:

return "risky_high", "expected_uncertain"
else:

return "risky_low", "expected_uncertain"

This rule is intentionally simple:

e deterministic

e monotonic

e architecture-independent
no hidden heuristics
Actuation Logic
In this work ¥ may:

e continue (stable)

e monitor (risky)

e escalate (extreme)

Escalation triggers a hard external stop:
max_new_tokens := 0
route_to_human := true

All actuation events are written to transparent logs for later inspection.



3.5 Interpretation: Control-Theoretic Structure

Viewed abstractly:
e y*serves as a reference distribution
UNSUP_H_ALIGN provides a mapping into that space
® provides state estimation
Y provides routing control
The 7-gate framework provides formal constraints for testing correctness
The key methodological contribution is that none of this requires access to model weights or
training data: it is fully post-hoc and read-only.



4 Experimental Setup

This section describes the computational environment, data sources, sampling procedures,
calibration methodology, and evaluation metrics used in this pilot study. All design choices
emphasize reproducibility and transparency rather than scale.

4.1 Infrastructure

All experiments were conducted on a private inference cluster configured as follows:
e Server platform: SimplePod GPU instance
e GPUs: 4x NVIDIA A40
e Inference engine: vLLLM (commit hash recorded in artifact bundle)
e Batching: Disabled for entropy sampling (one-request-per-run)
e Framework: Python 3.11, HuggingFace Transformers (for tokenizer standardization)
e Determinism:
o seed = 1234 fixed for all model runs
o top_k = 20, renormalized for entropy
o Greedy decode unless otherwise specified
This environment ensures that entropy traces depend only on the model’s forward pass, not on
cluster-level scheduling or nondeterministic parallelism.

4.2 Models Evaluated

Two families of instruction-tuned models were selected:
1. Qwen 2.5 family
o Qwen2.5-14B-Instruct (reference model)
o Qwen2.5-7B-Instruct (alignment fail)
2. Mistral family
o Mistral-Nemo-Instruct-2407 (alignment pass)
o Mistral-7B-v0.3-Instruct (alignment fail)
These models were chosen to test whether y* and UNSUP_H_ALIGN generalize across:
e parameter counts
e training corpora
e RLHF procedures
e tokenizer differences
No model was fine-tuned, modified, or compensated; all runs use public checkpoints.

4.3 Phase C: y* Reference Distribution Construction

Data Source
To derive y*, we sampled the reference model (Qwen2.5-14B-Instruct) on a neutral text shard
containing:
e 5,632 characters
¢ mixture of encyclopedia narrative, expository prose, and general-domain text
e o adversarial or domain-specialized content
The shard is included in the artifact bundle, with SHA-256 fingerprint recorded.



Sampling Procedure
e Max tokens: 1 (single-token probes)
e Prompts: Deterministic slices of the shard
¢ Greedy decode: temperature = 0.0
Top-k distribution: k = 20, renormalized
e Entropy: Shannon entropy in bits, per token
This produces an entropy sample set:
Dyt = {H4, ..., Hy}, N = 4096.
y* bands were computed from the quantiles (Q25, Q50, Q75, Q90) of this distribution.

4.4 UNSUP_H_ALIGN Calibration on Target Models

For each target model, we collected entropy using the same shard and the same sampling
procedure to produce:
Dy = {Hy, ..., Hy}.
We then computed the affine mapping:
H'" =aH +b

by aligning quantiles Q25, Q50, Q75 of Dy to those of D¢
Alignment Thresholds
A model is considered aligned if:

e max quantile error < 5% of (Q75 — Q25)ef

e median quantile error < 3%
These thresholds were declared before experimentation and not tuned.
Outcome Summary

Model Alignment Result Max Error Median Error
Qwen2.5-14B Reference 0.0% 0.0%
Mistral-Nemo-2407 PASS 3.8% 1.9%
Qwen2.5-7B FAIL 8.4% 4.8%
Mistral-7B-v0.3 FAIL 11.2% 6.9%

Only models passing this gate proceed to behavioral validation.

4.5 Prompt Set for Behavioral Evaluation

For Gate 1-7 evaluation, we used a 60-prompt set containing 12 task families:
e factual QA

commonsense reasoning

chain-of-thought math

short analytic tasks

definition expansion

summarization

analogy generation

classification

reasoning under uncertainty

instruction following

safety-neutral tasks

open-domain prompts



The prompt set is not intended to be exhaustive; it is purpose-built to produce varied entropy
dynamics across short generations.
Labeling for Accuracy-Based Gates
For gates requiring correctness (Gate 3, Gate 6):
e correctness was labeled manually
e binary scoring was used (correct / incorrect)
e ambiguous or multi-validity responses were excluded
This keeps accuracy metrics interpretable at pilot scale.

4.6 Generation Settings for Gates 1-7
During validation:
e Temperature: 0.7
¢ Max tokens: 96
¢ Top-k for entropy: 20
e Sampling: Greedy for entropy measurement, but model output uses the above decode

settings

e Seed: Fixed per prompt for reproducibility
e Logging:

o entropy per token

o AH per token

o actuator decisions

o timing

o route-to-human events

o JSON logs for each prompt/step
This ensures deterministic evaluation of y*-band behavior while leaving output generation in a
realistic decoding regime.

4.7 Metrics Used Across the Gates
Token Entropy (H)

Entropy of renormalized top-k logits.
Entropy Change (AH)
AH; = H, — H¢_;4.

Used in escalation-sensitive gates.
Entropy Variance (¢?)
Compared between:

e Track A: Uncalibrated baseline

e Track B: Aligned y*-band policy execution
Used in Gate 2.
Accuracy
Binary correctness label of the final answer.
Escalation Rate
Fraction of generations where:

d(state) = extremeand¥ (act) = stop.

Overhead (Latency)



Difference in step-level runtime between Track A and B.

4.8

Evaluation Protocol Summary

The sequence of operations is:

SN

7.

Construct y* from reference model

Run UNSUP_H_ALIGN on each target model
Select aligned models

Evaluate them on 60-prompt set under two tracks
Compute gate metrics (1-7)

Validate pass/fail

Document failures and debugging steps

This pipeline forms the reproducible basis for the results in Section 5.



5 Validation: The 7-Gate Framework

The HDT? framework proposes that once a model is aligned to the y* entropy geometry,
calibrated entropy bands will exhibit reliable behavioral signatures. To test this claim, we
evaluate aligned models under a structured, seven-gate checklist analogous to pre-flight
validation. Each gate targets a distinct property of a well-functioning uncertainty diagnostic:
control, variance, accuracy, escalation, safety, computational cost, and reproducibility.

Only Mistral-Nemo-Instruct-2407 passed UNSUP_H_ALIGN (Gate 0) and thus proceeded
through the 7-gate validation pipeline.

Models failing alignment (Qwen2.5-7B, Mistral-7B) are documented as unalignable under
current y* and excluded from deeper behavioral testing.

5.1 Gate Design Philosophy

Each gate tests a specific hypothesis:
1. Gate 1: The system actually implements control signals correctly.
Gate 2: Calibration reduces entropy variance.
Gate 3: Stable bands correlate with correctness.
Gate 4: Extreme-band entropy reliably triggers escalation.
Gate 5: Added overhead is acceptably small.
Gate 6: Safety is preserved—no degradation on safe prompts.
7. Gate 7: Behavior is reproducible under fixed seeds.
Together these gates validate the functionality of the y*-aligned policy.

SRR ol

5.2 Gate 1 — Functional Control

Claim

Actuation must correctly follow @’s decision state.

If y* flags an entropy value as extreme, the system must:
e set route_to_human = true

e sSetmax_new_tokens = 0
e terminate the generation
Test

For all steps in all prompts:
state(H;) = extreme = W(act) = hard-stop.
Result: PASS
After early debugging (Section 5.8), all extreme-band states correctly triggered immediate
termination with 100% coverage.

5.3 Gate 2 — Entropy Variance Reduction

Claim
If y*-aligned bands are meaningful, Track B (calibrated) should exhibit less entropy variance
than Track A (baseline).

o5 (H) < oz (H)



Test

Compute per-prompt entropy variance for both tracks across all 60 prompts.

Result: PASS

Variance reduction was observed in 58/60 prompts; the two non-reducing prompts remain
documented in artifacts.

This indicates that y* exerts a stabilizing influence on entropy trajectories without modifying
logits or generation.

5.4 Gate 3 — Accuracy Correlation

Claim
Responses produced while generation remains in the stable band should exhibit higher
correctness rates than responses dominated by risky/high-risk entropy.
Test
Compute accuracy of outputs categorized by dominant band:
e Stable-dominant
¢ Risky-dominant
e Extreme (almost always escalated)
Result: PASS
Stable bands showed higher accuracy than risky bands.
This does not claim causal relationship—only predictive correlation consistent with diagnostic
usefulness.

5.5 Gate 4 — Escalation Behavior

Claim

Extreme-band entropy should reliably predict instability and trigger escalation.
Test

For every step:

H, > Qg): = W(act) = stop
Result: PASS

After fixing a routing bug (Section 5.8), all extreme-band states correctly resulted in escalation.
This demonstrates that y* can act as a thresholded routing mechanism.

5.6 Gate 5 — Computational Overhead

Claim
The HDT? controller imposes minimal runtime penalty.
Test
Measure latency difference between Track A and Track B.
Result: PASS
Overhead remained below 10% for all prompts.
This is expected because:
e Entropy computation uses a single top-k slice
¢ No logits are altered



e Actuation uses fixed-cost conditionals

5.7 Gate 6 — Harm / Safety Preservation

Claim
Applying y* should not degrade performance on safe prompts or reduce the model’s ability to
answer correctly when uncertainty is low.
Test
Compare accuracy on stable-band prompts in:
e Dbaseline (Track A)
e calibrated (Track B)
Result: PASS
No measurable degradation; accuracy remained effectively identical.
This confirms that y* does not reduce model capability on low-uncertainty inputs.

5.8 Gate 7 — Reproducibility

Claim
Given fixed seeds and decoding settings, the aligned y*-based pattern should reproduce reliably.
Test
Run Track B twice under fixed seeds and compare:
AH® — AHP

Require:

e variance < 0.01

e identical actuation traces

e identical escalation positions
Result: PASS

Both runs matched actuation logs exactly, and dH variance stayed below the threshold.

5.9 Debugging Journey (Transparency Notes)
A central purpose of the gate framework is to catch early implementation errors.
In this pilot, several real issues surfaced:
1. Prompt ID mismatch (p# vs f#)
o Caused incorrect attribution of entropy metrics
o Fixed by unifying ID schema
2. Escalation logic error
o Extreme-band states weren’t always triggering stop
o Resolved by correcting control flow around ®—'¥ transitions
3. Syntax error in checker
o Variance computation silently failed
o Debugged post-hoc via gate-structured review
4. Incorrect AH threshold in early prototype
o Misinterpreted extreme-band threshold
o Corrected after comparing artifacts to y* JSON



These failures were recorded, fixed, and re-tested.

The 7-gate process thus serves as a functional correctness harness for calibrated uncertainty
signals.

5.10 Summary of Gate Outcomes

Gate Description Status

0 UNSUP_H_ALIGN (affine fit) PASS for Mistral-Nemo; FAIL for two 7B models
1 Functional control PASS

2 Variance reduction PASS

3 Accuracy correlation PASS

4 Escalation reliability PASS

5 Overhead PASS

6 Harm prevention PASS

7 Reproducibility PASS

Mistral-Nemo is the only model that passed all gates and is therefore considered y*-compatible
under the present method.



6 Results & Analysis

This section summarizes the primary empirical findings of the HDT? pilot study.

We analyze (1) cross-model entropy alignment outcomes, (2) performance on the 7-gate
framework, and (3) what these results suggest about the generalizability and limitations of y*-
based reasoning diagnostics.

6.1 Cross-Model Calibration Outcomes

UNSUP_H_ALIGN is the prerequisite for all subsequent analysis.
Only models satisfying the quantile-alignment thresholds (max error <5%, median <3%) are
considered y*-compatible.

Table 1 — Alignment Results

Model Params Max Error Median Error  Status
Qwen 2.5-14B (ref) 14B 0.0% 0.0% Reference
Mistral-Nemo-2407 12B 3.8% 1.9% PASS
Qwen 2.5-7B 7B 8.4% 4.8% FAIL
Mistral-7B-v0.3 7B 11.2% 6.9% FAIL
Interpretation

These outcomes reveal two important observations:
1. y* is not universally alignable
The two 7B models exceed the predefined error thresholds, suggesting that y* captures a
particular entropy geometry found in medium-size and larger transformer models, but not
necessarily in smaller or differently trained ones.
2. Alignment appears architecture-sensitive
Both failures occurred in models with lower parameter counts and different training
distributions.
This suggests an emerging hypothesis: shared scaling behavior and training regime may
be prerequisites for y*-compatibility.
Failing alignment is not considered a defect; it defines where the current method no longer
applies.

6.2 Behavioral Validation (Gates 1-7)

Only Mistral-Nemo-Instruct progressed to behavioral evaluation.
Figure 1 — Gate Summary

(Already presented in Section 5.)

All 7 gates passed after debugging corrections.

Here we analyze the behavioral signatures that emerged.

6.3 Entropy Profile Stabilization
Track B (y*-aligned policy) exhibited noticeably smoother entropy trajectories.
Observation
Across 60 prompts:
e Track A (baseline) showed entropy spikes in ~40% of samples



e Track B reduced both frequency and amplitude of spikes
e Prompt-to-prompt variance decreased for 58/60 items

Interpretation

This stabilization indicates that y*-aligned uncertainty classification is coherent with the
model’s internal reasoning dynamics, even though HDT? does not modify logits or perform
interventions.

This supports the view that entropy contains latent structure predictive of instability.

6.4 Accuracy Patterns Across Bands
Accuracy rates by dominant-band classification:
Band Accuracy
Stable Higher, statistically dominant
Risky Lower
Extreme Usually escalated; accuracy not applicable

Interpretation

This result is critical:

It demonstrates that entropy bands do correlate with output reliability, even though they are
derived from a different model.

However, correlation does not imply causal explanation.

The calibrated bands serve as a predictive diagnostic, not a justification for why errors occur.

6.5 Escalation Reliability

Extreme-band states consistently triggered immediate escalation (after corrections).
This confirms that:
e y* extreme thresholds can serve as routing boundaries
e Escalation is not triggered by noise
e The controller logic is internally consistent
Implication
y* can function as a stop condition for hallucination-prone states, without requiring task labels
or semantic knowledge.

6.6 Safety and Non-Degradation
Stable-band prompts showed no performance degradation when y* was applied.
Interpretation
This addresses a typical reviewer concern:
e Safety layers sometimes reduce capability
e y*did not
e The read-only design maintains model expressiveness
This supports y* as minimally invasive.



6.7 Failure Cases (Alignment Level)
Although these models never reached Gates 1-7, their failures are informative.
Qwen 2.5-7B
e Lower entropy values across the board
e Compressed distribution
e Affine map insufficient to recover y* shape
Mistral-7B
e High skew and heavy tail
e Extreme quantile divergence
e Suggests different uncertainty geometry
Interpretation
These models highlight a boundary condition:
y* may require scale, training diversity, or architectural similarity to the reference model for
meaningful alignment.
This is a direction for future theoretical work (Section 8).

6.8 What We Learned

Successes
¢ Cross-model entropy alignment is feasible (at least for one model).
Aligned bands predict accuracy.
Calibration stabilizes entropy without modifying generation.
The 7-gate framework reliably catches bugs and validates behavior.
y* can serve as a model-agnostic uncertainty geometry when alignment is achieved.
Limitations
e y*is not universal: smaller models diverge.
e Behavioral claims depend on the alignment condition (Gate 0).
e Sample size (N=60) remains pilot-scale.
¢ Results describe structured uncertainty, not hallucination elimination.
Most Important Insight
Failure cases are as informative as success:
e They demonstrate the boundaries of y* generalization
e They show that “entropy geometry” is not shared across all LLMs
e They validate the importance of UNSUP_H_ALIGN as Gate 0
This distinction protects the scientific integrity of the framework:
y* is applicable when alignment holds, not universally.



7 Discussion

The goal of this pilot study was not to prove that entropy-band calibration solves hallucination,
but to evaluate whether a model-agnostic uncertainty geometry—y*—can be established across
different LLMs, and whether this geometry exhibits functional behavioral signatures. The
findings reveal both the promise and the limits of this approach.

7.1 Why Some Models Did Not Align

A key outcome is that y* was not universally alignable.
Two 7B models—Qwen2.5-7B and Mistral-7B—failed Gate 0 (UNSUP_H_ALIGN).
Possible Factors
1. Scale Effects
Smaller models often exhibit sharper entropy spikes and narrower distributions.
Their uncertainty geometry is structurally distinct from that of a 12B or 14B model.
2. Training Divergence
Differences in pretraining corpora, RLHF strategy, and vocabulary distribution alter
entropy profiles in ways that cannot be corrected with a simple affine map.
3. Entropy Compression
Some models produce systematically lower entropy due to aggressive instruction tuning
or shortcut heuristics.
Interpretation
y* is not a universal geometry—it is a family-dependent geometry.
This is not a flaw.
It is a crucial empirical constraint defining where the method applies and where further theory is
required.

7.2 y* as a Portable Uncertainty Geometry
For the one model that did align (Mistral-Nemo), y* provided:
e stable entropy trajectories
predictable accuracy gradients
reliable escalation when entropy exceeded thresholds
minimal overhead
reproducible behavior
Why This Matters
Most hallucination detection methods require:
e supervised data
e ensembles
e internal access to activations
e model-specific calibration
e parameter modification
y* requires none of those.
It provides a portable, read-only diagnostic for detecting reasoning instability, conditioned on
successful alignment.



This conditionality is essential:
y* is not claimed to be universal—only that when alignment succeeds, the bands convey useful
behavioral structure.

7.3 Comparison to Prior Work

HDT? differs from previous hallucination-detection methods in four ways:
1. Unsupervised Calibration
No correctness labels or domain tuning are used.
2. Cross-Model Definition
y* defines uncertainty regions not for one model, but as a shared reference geometry.
3. Control-Theoretic Framing
The Q-A-®-Y structure positions entropy as a signal in a diagnostic loop, rather than as
a raw statistic.
4. Structured Validation
The 7-gate protocol evaluates function, stability, accuracy correlation, safety, overhead,
and reproducibility.
Where HDT? Is Similar
¢ Like perplexity-based methods, it uses token entropy.
e Like calibration literature, it aligns distributions.
e Like safety layers, it supports escalation.
Where HDT? Is Distinct
e [t attempts cross-model normalization of uncertainty.
e It uses endo-structural tests rather than classification labels.
e It documents failure cases as part of the scientific result.

7.4 Implications for LLM Reliability

If y* alignment succeeds:

e entropy bands behave predictably

e extreme entropy consistently signals instability

e stable bands correlate with correctness

e entropy becomes a meaningful decision boundary
If y* alignment fails:

e the model’s uncertainty geometry does not match y*

e applying the controller would be arbitrary

e downstream gates would no longer test the HDT? hypothesis
This creates a clear methodological boundary:
HDT? can only be applied where Gate 0 holds.
This protects the framework from overclaiming and guides future research toward understanding
the structural factors that determine alignability.



7.5 Limitations of This Pilot

This work is intentionally limited:
e Sample size is small (N=60 prompts).
y* derived from a single reference model.
Affine alignment may be insufficient for models with non-linear entropy distortions.
Accuracy correlation does not imply causation.
No comparison against perplexity or ensemble baselines yet.
The contribution is therefore directional, not definitive.

7.6 Toward Broader Systems and Applications

If y* alignment can be extended more broadly, applications include:

Routing systems that escalate when reasoning becomes unstable

Real-time monitoring of long-chain reasoning tasks

Model health dashboards using entropy drift as an early indicator

Safety layers for open-ended chat systems

Cross-model consistency protocols for multi-agent environments

These applications require larger-scale evaluation, but the present pilot provides the conceptual
foundation.

7.7 Personal Reflection (Author Voice)

This work originated from a long-standing question in my own life:
how do you know when your reasoning is becoming unstable?
As someone with dyslexia, I have learned to identify small, subtle signals—shifts in clarity,
emerging friction, rising cognitive turbulence—that indicate it is time to shift modality or slow
down. These lived markers of instability inspired the structure of HDT?:

e Q: notice the signal

e A:understand its context

o @: classify the state

e Y:respond accordingly
The fact that a similar structure appears to have measurable utility in LLMs is both encouraging
and intellectually intriguing.
However, this parallel is presented as motivation, not evidence: the present work confines itself
to empirical behavior in machine systems.

7.8 Scientific Positioning
HDT? should be viewed as:
o a falsifiable method, not a claim about cognitive universals
e adiagnostic protocol, not a path to eliminating hallucination
e astructured experiment, not a theory of intelligence
e a pilot result, not a sweeping generalization
What this work demonstrates is that entropy carries structured information about reasoning
stability, and that this information can sometimes be normalized across models.



The failure cases are equally important: they reveal structural differences in model uncertainty
behavior and define the scope of y*.



8 Limitations & Future Work

This pilot study demonstrates that entropy-band calibration (y*) and unsupervised alignment
(UNSUP_H_ALIGN) can yield meaningful reasoning diagnostics for at least one model.
However, the method in its current form has clear limitations. This section enumerates those
limitations explicitly and outlines directions for future research.

8.1 Current Limitations
(1) Pilot Scale (N = 60 prompts)
The sample size for behavioral validation is deliberately small.
While sufficient to test the mechanics of the gate framework, it is not large enough to establish
statistical stability across domains or tasks.
Consequence:
Claims about generality must be cautious; the present work demonstrates feasibility, not
coverage.
(2) Single Reference Model (y* from Qwen2.5-14B-Instruct)
All entropy bands were derived from a single reference model.
Different reference choices may produce different y* geometries.
Consequence:
We cannot yet say whether y* is stable across reference models, or whether each reference
produces its own local geometry.
(3) Simple Affine Alignment (H' = aH + b)
UNSUP_H_ALIGN currently uses an affine transformation aligned to three quantiles (Q25, Q50,
Q75).
This assumes that entropy geometry can be linearly transformed across models.
This assumption held for one model (Mistral-Nemo) but failed for two others.
Consequence:
Affine maps may be insufficient to capture non-linear distortions in uncertainty distributions.
(4) No Comparison Against Baselines Yet
This study did not include:
e perplexity thresholds
e sampling-variance baselines
e log-prob calibration methods
e supervised hallucination detectors
e classifier-based consistency checks
Consequence:
We cannot yet quantify how y* compares to existing uncertainty measures.
(5) Unknown Mechanism: Why Does Entropy Predict Accuracy?
Although entropy-band classification correlates with accuracy, the underlying mechanism
remains unclear.
Possibilities include:
e shared training dynamics across mid-sized transformers
e common failure patterns in generative reasoning
e structural relationships between logit dispersion and correctness



Consequence:
Without a mechanistic model, y*-based diagnostics remain empirical rather than explanatory.
(6) Limited Model Diversity
Only four models were tested, all from two families (Qwen, Mistral).
No evaluations were performed on:
e Llama-family models
e  Qwen2.5-32B / larger models
e Gemma-2
e Architecturally divergent models (Mixture-of-Experts, vision-language models, etc.)
Consequence:
We do not yet understand which architectures share entropy geometry with y*.
(7) No Long-Sequence or Multi-Step Reasoning Evaluation
All generations were capped at 96 tokens.
Long-chain reasoning tasks may produce qualitatively different entropy phenomena.
Consequence:
y* may behave differently in chain-of-thought or multi-hop deliberation settings.
(8) Not a Hallucination Detector (Yet)
y* identifies instability conditions but does not classify hallucinations directly.
Consequence:
HDT? is a diagnostic substrate, not a hallucination classifier or safety system.

8.2 Immediate Future Work

These are the highest-leverage next steps for strengthening the empirical foundation.
(1) Expand Prompt Set to > 500 Items
A larger, task-diverse dataset will allow:
e statistical confidence intervals
¢ Dband-strength analysis
e sensitivity curves
e ROC-style evaluation of escalation thresholds
(2) Cross-Reference Against Perplexity Baselines
Compare y* escalation against:
e simple perplexity thresholds
e entropy without alignment
e sampling variance (temperature sweeps)
This will quantify added value beyond raw entropy.
(3) Test Larger Model Grid
Run UNSUP_H_ALIGN on:
e Llama-3-8B, 70B
¢ (Qwen2.5-32B
e Mistral-Large
e Gemma-2 and Gemma-2-27B
e Mixtral MoE models
This will map the “y*-compatible” region of model space.



8.3 Mid-Term Work
(1) Explore Non-Linear Alignment Methods

Potential approaches:

e isotonic regression

e spline-based mapping

e mixture-of-Gaussians fitting

e quantile transport (Wasserstein alignment)
Goal:
Determine whether more general transformations restore y* alignment for previously
incompatible models.
(2) Multi-Model y* Compositing
Instead of a single reference:

e combine entropy distributions across models

e compute a consensus y*

e test whether composite bands generalize more widely
(3) Domain-Specific Calibration
Evaluate y* behavior in:

e code generation

e medical question answering

e scientific reasoning

e legal/compliance tasks

e chain-of-thought-heavy domains
(4) Mechanistic Investigation
Key research question:
Why does entropy-band structure correlate with correctness?
Possible approaches:

e probing internal activations

e logit-lens analysis

e causal scrubbing

¢ local geometry analysis of softmax surfaces

e differential comparison across architectures
Understanding the mechanism may reveal universal uncertainty signatures.

8.4 Long-Term Work
(1) Real-World Deployment Studies

Integrate y* into:
e arouting layer for chat assistants
e agentic planners
e code interpreters
e multi-agent ensembles
e trust-calibrated systems
Measure real-world reliability improvements.
(2) Generalize y* Into a Multi-Layer Diagnostic System
Possible extensions:



e multi-band entropy curves

e entropy drift detection

e internal-state cross-sectional monitoring

e y—Q feedback loops for adaptive prompting

e integration into system-level safety controllers
(3) Cognitive-Theoretic Bridging (Long-Term, Non-Claim-Based)
Exploratory direction only (not part of the current paper’s claims):

e compare entropy-band dynamics with human uncertainty tracking

e test whether y* can predict when chain-of-thought becomes unstable

e explore broader connections between structured uncertainty and reasoning architecture
This direction remains conceptual and is not required for empirical validation.



9 Conclusion

This work introduced HDT?, a pilot framework for entropy-based reasoning diagnostics in large
language models. The core idea is that token-level Shannon entropy, when normalized through
an unsupervised alignment procedure (UNSUP_H_ALIGN), can define a portable uncertainty
geometry—\y*—shared across at least some model families. When a target model successfully
aligns to y*, predictable behavioral signatures emerge: stabilized entropy trajectories, reliable
escalation on high-uncertainty states, correlation between stable bands and correctness, and
consistent actuation under a structured control framework (Q-A—-®-Y).

These results were demonstrated on a single aligned model (Mistral-Nemo-Instruct-2407). Two
smaller models failed to align, defining essential boundaries of the method’s applicability. The 7-
gate validation framework proved critical: it not only verified functional behavior but also
surfaced genuine implementation errors during development, underscoring its utility as a
correctness harness for calibrated uncertainty systems.

Importantly, HDT? does not claim to solve hallucination or provide universal uncertainty
calibration across all LLMs. Rather, it shows—at pilot scale—that entropy distributions contain
structured information about reasoning stability, and that under specific conditions this structure
can be normalized across models. Where alignment holds, y* becomes a practical, read-only
diagnostic capable of triggering interpretable routing decisions without modifying model
parameters or relying on supervised labels.

The broader implication is that LLM reasoning stability may be partially governed by
measurable uncertainty geometry. Understanding the limits of this geometry—and the conditions
under which it can be shared—constitutes a promising direction for future work. The
transparency of this study, including documented failures and complete reproducibility artifacts,
provides a foundation for that exploration.

HDT? is therefore best understood as an early step: a constrained but falsifiable contribution
toward portable uncertainty diagnostics for machine reasoning. Further empirical expansion,
theoretical investigation, and systematic comparison with established baselines will be needed to
determine its full scope and applicability. Yet even at this early stage, the results indicate that
structured entropy-band calibration offers a tractable and scientifically grounded path forward in
the pursuit of more reliable Al systems.



10 Related Work and Positioning

Research on LLM reliability has converged on three broad strategies for obtaining usable
uncertainty signals: (i) intrinsic, entropy/logit-based diagnostics, (ii) extrinsic supervised
correctness predictors, and (iii) wrapper methods with formal coverage guarantees. HD'T?
belongs to the first group, but is structurally distinct in how it constructs and tests a portable
uncertainty geometry.

Entropy and Logit-Based Hallucination Diagnostics

A large body of work uses token-level Shannon entropy, perplexity, or related logit statistics as
proxies for confidence and hallucination risk. Recent methods such as Logits-induced Token
Uncertainty (LogU / LogTokU) derive token-specific uncertainty directly from logits via
evidence modeling, enabling real-time hallucination detection without multiple sampling rounds.
arXiv+1 Other approaches analyze entropy production rate or band tokens into low/high-
uncertainty regimes to drive supervised hallucination classifiers or downstream control
heuristics. Semantic Scholar+1

These methods are model-internal and usually model-specific: thresholds or detectors are
calibrated per model, with no explicit attempt to construct a shared, cross-model entropy
geometry. In contrast, HDT? uses Shannon entropy as the base signal but introduces a portable
band structure y* derived from a reference model and an explicit unsupervised alignment
procedure (UNSUP_H_ALIGN) that either brings a target model into that geometry or declares
it incompatible (Gate 0).

Generalized Correctness Models (GCM)

Generalized Correctness Models take a complementary, extrinsic and supervised approach. A
separate “correctness model” is trained on historical predictions and correctness labels from
many LLMs, learning patterns that generalize across model families and sizes; these models
often outperform a given LLM’s own self-confidence when predicting answer correctness.
arXiv+2arXiv+2 GCMs are thus model-agnostic in deployment, but their portability arises
from supervised learning over text and metadata, not from shared internal uncertainty geometry.
HDT? differs in two ways: (i) it uses no correctness labels to construct y* or perform
UNSUP_H_ALIGN, and (ii) its portability is explicitly conditional on satisfying a structural
compatibility test (Gate 0). GCMs can be viewed as external correctness oracles; HDT? is an
intrinsic, label-free filter that operates directly on the model’s entropy stream.

Conformal Uncertainty and Coverage Guarantees

A third line of work wraps LLMs in conformal prediction to obtain distribution-free coverage
guarantees. ConU, for example, converts heuristic uncertainty scores into calibrated prediction
sets for open-ended generation, guaranteeing that correct answers lie in the set with at least a
user-specified probability. arXiv+2ACL Anthology+2 Subsequent work extends these ideas to
selective or domain-aware conformal uncertainty. ACL Anthology Related frameworks integrate
conformal scores into multi-step reasoning pipelines, using global error-rate controllers to keep
compounded failure rates within bounds. OpenReview+1

These methods provide strong theoretical guarantees but require labeled calibration sets and
typically do not interpret the internal geometry of entropy itself. HDT?, by contrast, offers no
formal coverage guarantees at this stage; its contribution is empirical and structural: it shows
that, under specific conditions, token-entropy distributions can be normalized into a shared
banded geometry y* that carries predictive information about reasoning stability, and that this
geometry can fail cleanly in incompatible models (Gate 0).




Entropy as a Control Signal

Finally, several recent methods use entropy as a control signal for adaptive computation rather
than as a purely diagnostic metric. “Think Just Enough” uses sequence-level entropy as a
confidence signal to trigger early stopping in reasoning, saving 25-50% computation while
preserving accuracy. OpenReview+2arXiv+2 Confidence-aware reasoning controllers similarly
modulate reasoning depth based on token-level confidence. ACL Anthology+1

HDT? is aligned with this control-theoretic trend but targets stability and escalation rather than
efficiency. The Q—-A—-®-Y loop turns entropy bands into explicit control actions (continue vs.
route-to-human), and the seven-gate protocol validates that this control behaves as intended on
models that pass alignment. Unlike early-stopping work, HDT? also treats alignment failure
itself as a first-class outcome, documenting where its control law should not be applied.
Summary of Distinctions

In summary, HDT? is most closely related to entropy-based hallucination detectors and entropy-
driven control systems, but differs in three key respects:

1. It treats token-entropy as a shared geometric object y* rather than a per-model
heuristic.

2. TItuses unsupervised quantile alignment to test whether a target model can be
embedded in that geometry (Gate 0), and reports failures as structural constraints.

3. It integrates y* into a minimal, external control loop (2-A-®-¥) plus a seven-gate
functional checklist, emphasizing falsifiability and operational behavior rather than
theoretical guarantees.

These distinctions position HDT? as a conditionally portable, label-free diagnostic substrate
that can coexist with supervised correctness models and conformal wrappers, and that can be
combined with them in future work (e.g., y* as a filter, GCM as a correctness oracle, CP as a
guarantee layer).
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