

HDT²: A Pilot Framework for Entropy-Band Calibration of LLM Reasoning Stability

Bruce Tisler

2025

Author

Bruce Tisler

Independent Researcher

<https://quantuminquiry.org>

DOI 10.5281/zenodo.17621326

Repository GitHub: <https://github.com/btisler-DS/hdt2-entropy-band-calibration>

Abstract

HDT² (Holistic Data Transformation Theory) introduces a portable, entropy-banded diagnostic framework for assessing reasoning stability in large language models. The methodology centers on the hypothesis that token-level Shannon entropy encodes a cross-model structure—an “uncertainty geometry”—that can be aligned via unsupervised quantile matching. This pilot study establishes both positive and negative evidence: (i) successful entropy-band alignment enabling stable-reasoning detection in compatible models, and (ii) clear empirical boundaries where alignment fails, revealing architectural constraints on portability. This dual evidence grounds ψ^* as a scientifically falsifiable substrate for reliability diagnostics and control-theoretic actuation.

Recommended Citation

Tisler, Bruce. *HDT²: A Pilot Framework for Entropy-Band Calibration of LLM Reasoning Stability*. Zenodo (2025). DOI: 10.5281/zenodo.17621326.

License

This work is made freely available for academic research and education under

Creative Commons Attribution–NonCommercial–ShareAlike 4.0 (CC BY-NC-SA 4.0).

Commercial use requires explicit permission from the author.

Funding

No external funding was received for this work.

Keywords

LLM uncertainty · entropy-band calibration · reasoning stability · hallucination detection · cross-model alignment · HDT² · diagnostic control systems