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This paper introduces a geometric entropy-based instrument for analyzing how different 

interrogatives shape uncertainty, stability, and epistemic behavior in language models. The 

framework provides a reproducible method for measuring interrogative field dynamics across 

reasoning regimes. 
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Abstract  

Current evaluation methods for Large Language Models (LLMs) focus primarily on output 

quality—correctness, coherence, and alignment—while overlooking the structural dynamics of 

inquiry itself. This paper introduces a diagnostic instrument that models inquiry as a path-

dependent trajectory through a six-dimensional geometric field. By mapping interrogative 

primitives (Who, What, Where, When, Why, How) onto a cubic lattice governed by self-

organized criticality (SOC), we derive a quantitative metric: Interrogative Entropy ����. 

Empirical results show that ��exhibits deterministic and reproducible behavior across 

identical inquiry sequences ��� = 0.0000�, remains distinct from answer entropy ��
�, and 

reveals consistent operator signatures—including concentration avalanches triggered by spatial 

inquiry (WHERE) and global redistribution triggered by causal inquiry (WHY). We further 

observe a non-linear coupling in which maximum field entropy corresponds to minimum 

information density, a pattern indicative of defensive verbosity in language model outputs. 

Together, these findings demonstrate a reproducible method for characterizing the stability, 

phase behavior, and epistemic stance of language systems without requiring access to internal 
model weights. 

1. Introduction 

In thermodynamics, the state of a system is defined by variables—pressure, volume, 

temperature—that summarize its configuration independently of the specific particles involved. 

In language modeling, however, we lack an equivalent set of state variables capable of 

describing the stability or pressure of a reasoning process before an answer is generated. 

Earlier work in this research program introduced the Zeno framework, which probes models for 

behavioral failure modes such as fawning, hallucination shortcuts, and overconfident collapse 

under pressure. While effective at detecting failures in output, Zeno also revealed a key 

limitation: behavioral probes can show that a model has failed, but not the structural conditions 

that precede failure. 

To address this, HDT² Pilot v1 demonstrated that token-level Shannon entropy in model outputs 

follows a stable and reproducible geometry across model families. These “entropy bands” 

offered a calibration method for detecting instability in responses, yet left unresolved a deeper 

causal question: what features of an inquiry drive a model into a high-entropy or unstable state 

in the first place? 

HDT² Pilot v2 explicitly called for a “mechanistic probing of entropy-manifold structure” and 

the characterization of epistemic regimes. The present work answers that call by introducing a 

geometric instrument—the Interrogative Cube—which measures the structure and “pressure” 

of an inquiry itself, producing a state variable we call Interrogative Entropy ����. We 

hypothesize that interrogatives act as operators that inject load into specific dimensions of a 

cognitive field, and that the geometry of this field constrains the stability and epistemic posture 

of the resulting answer before any token is generated. 



2. Methodology: The Cubic Instrument 
2.1 Geometric Topology 
The diagnostic instrument is formalized as a six-dimensional cubic state vector ��at inquiry 

step �: 

�� = �who, �what, �when, �where, �why, �how 

Each ��represents the accumulated scalar load on one of the six interrogative dimensions. These 

dimensions correspond to the primitive operators of natural inquiry (Who, What, When, Where, 

Why, How), treated here as orthogonal axes of a geometric state space. 

2.2 Dynamics: The Topple Mechanism 
To prevent unbounded accumulation on any single interrogative dimension and to simulate the 

natural broadening of inquiry, the system employs a deterministic redistribution rule inspired by 

Self-Organized Criticality (SOC). 

The mechanism proceeds in three steps: 

1. Injection: 
A user question is parsed for interrogative markers. If a marker (e.g., Why) is detected, a 

load increment of +1.0is added to the corresponding face �why. 

2. Threshold Check: 
If any dimension satisfies 

�� ≥ � 
 

with threshold � = 1.0, the system triggers a topple event. 

3. Redistribution: 
The excess load is removed from the overloaded dimension and redistributed evenly 

across the remaining � − 1dimensions: 

�� ← �� + �� − �
� − 1 , � ≠ � 

 

This rule ensures that sustained emphasis on a single interrogative operator (e.g., repeated Why 

questions) eventually forces energy into the other dimensions. The resulting behavior 

approximates the context-expanding effect observed in natural inquiry. 

 
2.3 Metrics 
To characterize the coupling between inquiry structure and model response, the system tracks 

three quantitative metrics: 

1. Interrogative Entropy (��). 
The Shannon entropy of the normalized cube state, representing the dispersion of load 

across interrogatives: 

�� = − �
�

��lo g � �� 
 

where ��are the normalized face weights of ��. 

��functions as a state variable describing the structural pressure of the inquiry before 

any answer is generated. 



2. Answer Entropy (�
). 
The standard token-level Shannon entropy validated in HDT² Pilot v1, allowing direct 

comparison to known entropy-band stability baselines. 

3. Information Density (�
/token). 
Answer entropy normalized by output length, quantifying the density of uncertainty per 

token. This metric highlights phenomena such as defensive verbosity, were longer 

answers mask lower information density. 

 
3. Experimental Setup 
Experiments were conducted using the Inquiry Studio implementation of the cubic instrument, 

paired with a local inference engine running Meta-Llama-3-8B-Instruct (GGUF). This model 

was selected only after passing baseline stability checks using the Zeno calibration harness, 

ensuring that observed entropy fluctuations reflected properties of the interrogative geometry 

rather than artifacts of model drift or misalignment. 

To evaluate the behavior of the instrument under different structural conditions, three inquiry 

regimes were defined: 

• Regime A (Focused): 
Repeated iteration of a single interrogative (“How”). This regime tests whether the 

system reaches a stable equilibrium when inquiry remains confined to one dimension. 

• Regime B (Trajectory): 
A structured sequence 

Who → Where → When 

 

This regime tests sensitivity to order by examining whether interrogative sequences 

produce path-dependent field evolution. 

• Regime C (Cyclic): 
A complete six-interrogative cycle 

Who → What → When → Where → Why → How 

 

This regime is designed to elicit characteristic “operator signatures,” including potential 

avalanches, rebalancing events, and suppression effects. 

All experiments were conducted using identical prompts across runs to test reproducibility of 

field dynamics. 

 
4. Results 
 
4.1 Deterministic Field Measurement 
To evaluate the stability of the cubic instrument, we conducted two identical experimental runs 

(C1 and C2) using a full six-interrogative cycle 

Who → What → When → Where → Why → How. 
Because the model’s answer generation is stochastic, we hypothesized that if the geometric field 

dynamics were truly deterministic, the trajectory of Interrogative Entropy �� would reproduce 

exactly across both runs. 

This hypothesis was confirmed. The �� values for every step in the sequence matched to four 

decimal places across C1 and C2, shown in Table 1. 



Table 1 — Interrogative Entropy $% Reproducibility Across Runs C1 and C2 
Step Interrogative $H_I$ (C1) $H_I$ (C2) Variance 

1 WHO 2.2810 2.2810 0.0000 

2 WHAT 2.3083 2.3083 0.0000 

3 WHEN 2.3136 2.3136 0.0000 

4 WHERE 2.0955 2.0955 0.0000 

5 WHY 2.4401 2.4401 0.0000 

6 HOW 2.3892 2.3892 0.0000 

This zero-variance result indicates that the instrument measures a stable geometric property of 

the inquiry structure itself—independent of the probabilistic token generation that follows. In 

other words, the interrogative geometry is deterministic even though the language model’s 

responses are not. 

 
4.2 Interrogative Operator Signatures 
Across both C1 and C2, specific interrogatives exhibited distinct and reproducible “operator 

signatures” in the cubic lattice—observable as multi-face topple patterns and characteristic shifts 

in entropy. 

 
The WHERE Avalanche (Concentration Operator) 
In step 4 of both runs, Where consistently triggered a 3-face topple involving Where, Why, and 

How. 

This collapse drove �� to its global minimum of 2.0955, concentrating the field into a spatially 

narrow configuration. 

This signature reproduced exactly in C1 and C2, suggesting that Where reliably functions as a 

concentration operator in the interrogative geometry. 

 
The WHY Rebalancing (Redistribution Operator) 
In step 5, Why triggered a 5-face topple (Who, What, When, Where, Why), redistributing load 

almost uniformly across the cube. 

This global release of accumulated load forced �� to its global maximum of 2.4401. 

This behavior suggests that Why acts as a redistribution operator, counterbalancing the 

concentration triggered by Where. 

Together, these signatures form a consistent pattern across runs—one compressing the field, the 

other expanding it. 

 
4.3 Non-Linear Field–Answer Coupling 
We next examined the relationship between the state of the inquiry field �� and the information 

density of the resulting answer, quantified as Answer Entropy per Token �
/token. 

The results indicate a non-linear coupling: high field entropy often coincides with lower 

information density. 

 
WHY (High Field Entropy → Low Density) 
At the maximum field entropy (�� = 2.4401), the model generated its lowest-density responses, 

reaching 

�
/token = 0.0204. 



These answers were long, rhetorically elaborate, and low-surprise—consistent with a behavior 

we term defensive verbosity. 

 
HOW (Stable Field Entropy → Higher Density) 
In contrast, the How operator—associated with a stable state across all Type A runs—produced a 

significantly higher information density of 

�
/token = 0.0307. 
This pattern challenges the notion that broader questions yield richer answers. Instead, maximum 

interrogative entropy appears to produce verbose but low-density elaboration, while more 

constrained interrogatives (How, When) facilitate more compact informational content. 

 
4.4 Epistemic Stance Discrimination 
Finally, the instrument revealed stable patterns in the model’s epistemic stance—specifically in 

its use of hedging (linguistic uncertainty markers). 

Across both C1 and C2: 

• WHO / WHERE → High Hedging (Caution Signature) 
These interrogatives consistently elicited 3–7 hedges per answer. 

Both dimensions relate to risk and location, domains where the model appears to 

maintain epistemic caution across regimes. 

• HOW / WHEN → Zero or Near-Zero Hedging (Prescriptive Signature) 
These interrogatives consistently produced answers with 0–1 hedges, reflecting a 

prescriptive, procedural stance. 

For example, When in C2 (step 3) and How in C1 (step 6) both produced zero hedges. 

These signatures reproduced across regimes and runs, suggesting that epistemic stance is shaped 

more by interrogative class than by field complexity or answer diversity. 

 
5. Discussion 
The findings of this study demonstrate that inquiry itself can be modeled as a dynamical system 

with measurable geometric properties. Rather than treating questions as unstructured strings, the 

cubic instrument shows that interrogatives inject structured “load” into a six-dimensional field, 

producing deterministic state trajectories even in the presence of stochastic answer generation. 

The observation that specific interrogatives (e.g., Why and Where) act as reproducible 

operators—one expanding entropy, one collapsing it—suggests that reasoning stability may 

depend on balancing these geometric forces within the inquiry field. 

A second key result is that maximum field entropy corresponds to minimum answer 
information density, providing a quantitative signal for what may be described as verbosity-

driven hallucination or confidence erosion. This offers an interpretive bridge to prior work in 

HDT² Pilot v1, which identified “risky” entropy bands in model outputs but did not characterize 

their precursors. The present instrument suggests that these risky regions may correspond to 

geometric overloads in the interrogative state prior to generation. 

 
 
 



5.1 Toward a Predictive Control Stack: Integrating with RACE and 
AFCE 
Existing diagnostic tools such as RACE (Reasoning + Answer Consistency Evaluation) and 

AFCE (Answer-Free Confidence Estimation) provide high-quality post-hoc evaluations of model 

reliability. However, these techniques are computationally expensive, often requiring multiple 

forward passes, sampling rounds, or auxiliary scoring models to detect incoherence or calibration 

errors. 

The geometric instrument proposed here offers a potential predictive complement to these 

methods. Because Interrogative Entropy (H_I) can be measured before generation, the system 

can identify high-risk inquiry geometries in advance. For instance, the consistently low 

information density observed during high-entropy Why states suggests that certain interrogative 

configurations may predispose a model toward unstable or overly verbose reasoning. 

This motivates a tiered, geometry-aware control architecture: 

1. Input Layer – Geometric Assessment (The Cube): 
Compute (H_I) and identify whether the inquiry lies in a stable, concentrated, or 

overloaded region of the field. 

2. Gating Logic – Conditional Activation: 
If (H_I) approaches empirically identified thresholds (e.g., Where-driven avalanches or 

Why-driven global rebalancing), activate more expensive downstream evaluators. 

3. Output Layer – RACE / AFCE Application: 
Apply answer-consistency and confidence-estimation tools only when the geometry 

predicts elevated risk, reducing unnecessary compute while improving coverage. 

This approach reframes hallucination detection from a purely reactive procedure into a 

proactive, geometry-conditioned control loop, where the structure of the inquiry itself helps 

determine when deeper evaluation is required. The result is a hybrid system that balances 

computational efficiency with rigorous epistemic oversight. 

 
6. Conclusion 
The geometric instrument introduced in this work provides a physics-inspired framework for 

quantifying the structure of inquiry in language systems. By treating interrogatives as energetic 

inputs distributed across a conserved cubic lattice, we can observe deterministic transitions, 

stability regimes, and operator-specific signatures that remain invisible when examining outputs 

alone. This reframes interaction with LLMs not as isolated text exchanges but as trajectories 

through a measurable state space—a perspective that enables new forms of pre-generation 

diagnostics. 

Importantly, the method does not claim to prevent hallucination, modify model internals, or 

imply any form of agency or consciousness. It is strictly a measurement tool—an instrument for 

capturing the dynamics of questions themselves. The results presented here demonstrate 

reproducibility at the 8B parameter scale, but broader validation will require testing across larger 

models, diverse architectures, and multilingual interrogative geometries. Nonetheless, the 

deterministic behavior of the interrogative field across regimes suggests that geometric 

measurement may play a foundational role in future systems for monitoring reasoning stability 

and epistemic posture. 
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Appendix 
 
Appendix A — Formal Instrument Equations 
This appendix provides the formal mathematical definitions used in the cubic interrogative field 

instrument. 

A.1 Cube State Vector 
At each step ( t ), the state of the inquiry field is represented by: 

�� = {�who, �what, �when, �where, �why, �how} 

Where: 

• �� represents accumulated scalar load on interrogative dimension ( i ) 

• All loads are non-negative real values 

• The state vector is normalized for entropy computation: 

�� = ��
∑� ��

 

A.2 Interrogative Entropy 
Interrogative entropy �� measures the dispersion of load across the six interrogative dimensions: 

�� = − �
-

�./
��log � �� 

This produces a continuous measure between: 

• 0 bits (all load concentrated on one interrogative) 

• lo g � 6 ≈ 2.585 bits (perfectly uniform field) 

 

A.3 Topple Mechanism (Self-Organized Criticality) 
A deterministic redistribution rule enforces field stability: 

1. Injection Rule 

If a prompt contains interrogative marker �, then: 

�� ← �� + 1.0 

Threshold Condition 

A topple occurs when: 

�� ≥ τ where τ = 1.0 
 
Redistribution Rule 

When a face topples, the following transformation is applied: 

�� ← �� − 1.0 

�� ← �� + 1.0
5  for all � ≠ � 

Topples repeat recursively until no �� ≥ �. 

This rule ensures: 

• no dimension can indefinitely accumulate load, 

• interrogative pressure propagates across the field, 

• avalanche dynamics emerge naturally. 

 
 



 
Appendix B — Summary of Inquiry Regimes 
Three regimes were used to validate deterministic field dynamics. 

 
Table B1 — Regime Definitions and Field Variance 

Regime Interrogative Pattern Description Field Range 
(ΔH_I) 

Notes 

A HOW → HOW → HOW Single operator 

repeated 

0.000 bits Establishes 

equilibrium baseline 

B WHO → WHERE → WHEN Directed 3-step 

trajectory 

0.22 bits Measures path-

dependent divergence 

C WHO → WHAT → WHEN → 

WHERE → WHY → HOW 

Full 6-operator 

cycle 

0.34 bits Reveals operator 

signatures 

 
Table B2 — Example H_I Trajectories 

Regime Step Sequence H_I Values 
A HOW × 5 2.3219, 2.3219, 2.3219, 2.3219, 2.3219 

B WHO → WHERE → WHEN 2.2810 → 2.5030 → 2.4840 

C Full cycle 2.2810 → 2.3083 → 2.3136 → 2.0955 → 2.4401 → 2.3892 

 
Appendix C — Reproducibility Tables 
Two identical runs (C1, C2) of the full six-interrogative cycle were conducted. 

 
Table C1 — H_I Reproducibility Across C1 and C2 

Step Operator H_I (C1) H_I (C2) Variance 
1 WHO 2.2810 2.2810 0.0000 

2 WHAT 2.3083 2.3083 0.0000 

3 WHEN 2.3136 2.3136 0.0000 

4 WHERE 2.0955 2.0955 0.0000 

5 WHY 2.4401 2.4401 0.0000 

6 HOW 2.3892 2.3892 0.0000 

Result: 
�� = 0.0000 

Interrogative entropy is categorically deterministic, unaffected by stochasticity in model 

outputs. 

 
Table C2 — Avalanche Patterns by Operator 

Operator Faces Toppled Pattern Effect 
WHERE WHERE, WHY, HOW 3-face avalanche Concentration 

WHY WHO, WHAT, WHEN, WHERE, WHY 5-face avalanche Global redistribution 

HOW HOW Single-face Stabilizing / suppression 

Patterns reproduced identically across runs. 

 
 



Appendix D — Operator Signatures 
Empirical analysis reveals stable and reproducible operator-specific dynamics. 

D.1 WHERE — Concentration Operator 
• Consistently triggers 3-face avalanches 

• Produces minimum field entropy in all runs 

�� = 2.0955 

 

• Interpretation: WHERE collapses the field into localized configurations. 

D.2 WHY — Global Rebalancing Operator 
• Consistently triggers 5-face redistribution 

• Produces maximum field entropy in all runs 

�� = 2.4401 

• Interpretation: WHY forces uniformity across the field, resetting global context. 

D.3 HOW — Suppression / Stabilizing Operator 
• In Type A, HOW produces stable equilibrium across all iterations 

• In Type C, HOW concludes with a moderate entropy value 

�� = 2.3892 

• Interpretation: HOW dampens variance and acts as a stabilizing operator. 

 
Appendix E — Answer Metrics (H_A, Density, Hedging) 
This appendix summarizes the output-side metrics computed for all steps across regimes. 

 
E.1 Metric Definitions 

• Answer Entropy 

(H_A): Shannon entropy over token distribution. 

• Information Density 
�


token
 

• Hedge Count: 
Markers including may, might, could, appears, suggests. 

• Certainty Count: 
Markers including clearly, definitely, certainly. 

 
Table E1 — Representative Output Metrics (from C1/C2) 

Operator H_A H_A/token Hedge Count Sentences Notes 

WHO ~6.65 ~0.0446 3–5 6–18 Consistent caution signature 

WHAT ~6.73 ~0.0284 2–7 14–15 Mid-range density 

WHEN ~6.79 ~0.0263 0 17–22 Prescriptive stance 

WHERE ~6.46 ~0.0323 3–4 11–14 Location-based caution 

WHY ~7.27 0.0204 1–4 23–24 Defensive verbosity (lowest density) 

HOW ~6.94 ~0.0307 0–3 16–21 Procedural, stable 

 
 
 



E.2 Observed Patterns 
1. Defensive Verbosity 

WHY consistently produces the longest, least dense answers. 

2. Prescriptive Stance 

WHEN shows near-zero hedging across all runs. 

3. Caution Signature 

WHO and WHERE systematically include higher hedge rates. 

4. Non-linear Field-Answer Coupling 

High �� (WHY) is associated with low �
/token, contradicting naive “broad question = 

dense answer” assumptions. 

 
 


